Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.3.289

Study on Formation Behaviors of Hydroquinone Clathrates with CO2 and N2 for Application to Selective CO2 Separation/Recovery from Flue Gases  

LEE, DONGWON (Department of Environmental Engineering, Kongju National University)
YOON, JI-HO (Department of Energy and Resources Engineering, Korea Maritime and Ocean University)
LEE, JONG-WON (Department of Environmental Engineering, Kongju National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.3, 2019 , pp. 289-295 More about this Journal
Abstract
Effects of various reaction factors such as pressure, time, and temperature on clathrate formation were investigated for hydroquinone with $CO_2$ and $N_2$. Experimental and spectroscopic results indicate that $CO_2$ plays more preferential role in forming hydroquinone clathrates than $N_2$. These results can be used in application of selective $CO_2$ separation from flue gases with the formation of clathrate compounds.
Keywords
Carbon dioxide; Nitrogen; Clathrate compounds; Hydroquinone; Flue gases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. Ho, G. Leamon, G. W. Allinson, and D. E. Wiley, "Economics of $CO_2$ and Mixed Gas Geosequestration of Flue Gas Using Gas Separation Membranes", Ind. Eng. Chem. Res., Vol. 45, No. 8, 2006, pp. 2546-2552, doi: https://doi.org/10.1021/ie050549c.   DOI
2 H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progress in Carbon Dioxide Separation and Capture: A Review", J. Environ. Sci., Vol. 20, No. 1, 2008, pp. 14-27, doi: https://doi.org/10.1016/S1001-0742(08)60002-9.   DOI
3 S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, and K. R. Jang, "Characterization of Metal Corrosion by Aqueous Amino Acid Salts for the Capture of $CO_2$", Korean J. Chem. Eng., Vol. 27, No. 5, 2010, pp. 1576-1580, doi: https://doi.org/10.1007/s11814-010-0246-z.   DOI
4 T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. Nair, "A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals", Angew. Chem. Int. Ed., Vol. 49, No. S1, 2010, pp. 9863-9866, doi: https://doi.org/10.1002/anie.201006141.   DOI
5 H. G. Jin, S. H. Han, Y. M. Lee, and Y. K. Yeo, "Modeling and Control of $CO_2$ Separation Process with Hollow Fiber Membrane Modules", Korean J. Chem. Eng., Vol. 28, No. 1, 2011, pp. 41-48, doi: https://doi.org/10.1007/s11814-010-0317-1.   DOI
6 E. S. Kikkinides, R. T. Yang, and S. H. Cho, "Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption", Ind. Eng. Chem. Res., Vol. 32, No. 11, 1993, pp. 2714-2720, doi: https://doi.org/10.1021/ie00023a038.   DOI
7 K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, and R. T. Yang, "Comparison of Activated Carbon and Zeolite 13C for $CO_2$ Recovery from Flue Gas by Pressure Swing Adsorption", Ind. Eng. Chem. Res., Vol. 34, No. 2, 1995, pp. 591-598, doi: https://doi.org/10.1021/ie00041a020.   DOI
8 B. K. Na, K. K. Koo, H. M. Eum, H. Lee, and H. K. Song, "$CO_2$ Recovery from Flue Gas by PSA Process using Activated Carbon", Korean J. Chem. Eng., Vol. 18, No. 2, 2001, pp. 220-227, doi: https://doi.org/10.1007/BF02698463.   DOI
9 M. Binns, S. Y. Oh, D. H. Kwak, and J. K. Kim, "Analysis of Hybrid Membrane and Chemical Absorption Systems for $CO_2$ Capture", Korean J. Chem. Eng., Vol. 32, No. 3, 2015, pp. 383-389, doi: https://doi.org/10.1007/s11814-014-0188-y.   DOI
10 S. P. Kang and H. Lee, "Recovery of $CO_2$ from Flue Gas Using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements", Environ. Sci. Technol., Vol. 34, No. 20, 2000, pp. 4397-4400, doi: https://doi.org/10.1021/es001148l.   DOI
11 E. D. Sloan and C. A. Koh, "Clathrate Hydrates of Natural Gases", CRC Press, USA, 2008, doi: https://doi.org/10.1201/9781420008494.
12 D. E. Palin, and H. M. Powell, "The Structure of Molecular Compounds. Part VI. The ${\beta}$-type Clathrate Compounds of Quinol", J. Chem. Soc., Vol. 1, 1948, pp. 815-821, doi: https://doi.org/10.1039/JR9480000815.
13 J. A. Ripmeester, "Application of Solid State $^{13}C$ NMR to the Study of Polymorphs, Clathrates and Complexes", Chem. Phys. Lett., Vol. 74, No. 3, 1980, pp. 536-538, doi: https://doi.org/10.1016/0009-2614(80)85269-9.   DOI
14 J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, "Inclusion Compounds", Academic Press, USA, 1984, doi: https://doi.org/10.1016/0160-9327(86)90068-2.
15 J. W. Lee, S. P. Kang, and J. H. Yoon, "Highly Selective Enclathration of Ethylene from Gas Mixtures", J. Phys. Chem. C, Vol. 118, No. 12, 2014, pp. 6059-6063, doi: https://doi.org/10.1021/jp4124716.   DOI
16 M. Kubinyi, F. Billes, A. Grofcsik, and G. Keresztury, "Vibrational Spectra and Normal Coordinate Analysis of Phenol and Hydroquinone", J. Mol. Struct., Vol. 266, 1992, pp. 339-344, doi: https://doi.org/10.1016/0022-2860(92)80089-Z.   DOI
17 J. W. Lee, Y. Lee, S. Takeya, T. Kawamura, Y. Yamamoto, Y. J. Lee, and J. H. Yoon, "Gas-Phase Synthesis and Characterization of $CH_4$-Loaded Hydroquinone Clathrates", J. Phys. Chem. B, Vol. 114, No. 9, 2010, pp. 3254-3258, doi: https://doi.org/10.1021/jp911822e.   DOI
18 J. W. Lee, K. J. Choi, Y. Lee, and J. H. Yoon, "Spectroscopic Identification and Conversion Rate of Gaseous Guest-Loaded Hydroquinone Clathrates", Chem. Phys. Lett., Vol. 528, 2012, pp. 34-38, doi: https://doi.org/10.1016/j.cplett.2012.01.033.   DOI