Browse > Article

Research Trends and Issues in Metal Additive Manufacturing  

Hong, M.P. (Smart Manufacturing Technology Research Group, Korea Institute of Industrial Technology)
Sung, J.H. (Smart Manufacturing Technology Research Group, Korea Institute of Industrial Technology)
Kim, Y.S. (School of Mechanical Engineering, Kyungpook National University)
Publication Information
Transactions of Materials Processing / v.31, no.5, 2022 , pp. 309-328 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 I.H.Lee, H.C. Kim, D.G. Ahn, 2020, Korean Terminologies for Additive Manufacturing according to the ISO/ASTM 52900 Standard. J. Korean Soc. Precision Engineering, Vol.37, No.12, pp.929-936. DOI: 10.7736/JKSPE.020.093   DOI
2 W.Y. Yeong, C.K. Chua, 2014, Bioprinting: principles and applications (Vol. 1). World Scientific Publishing Co Inc. https://doi.org/10.1142/9193   DOI
3 B. Meyerson, 2015, Top 10 emerging technologies of 2015. In World Economic Forum (Vol. 4). https://www.scientificamerican.com/article/top-10-emerging-technologies-of-20151/   DOI
4 A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, 2021, Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Applied Sciences, Vol.11, No.3, pp.1213. https://doi.org/10.3390/app11031213   DOI
5 https://am-power.de/tools/metal-additive-manufacturing/ metal additive manufacturing technology landscape
6 M. McMillan, M.Leary, M. Brandt, 2017, Computationally efficient finite difference method for metal additive manufacturing: A reduced-order DFAM tool applied to SLM. Materials & Design, Vol.132, pp.226-243. DOI:10.1016/J.MATDES.2017.06.058   DOI
7 K.T.Han, 2014, Research on Die Machining using 3D Printing and CAM System. J. Korea Society Power System Engineering, Vol.18, No.6, pp.91-98. https://doi.org/10.9726/kspse.2014.18.6.091   DOI
8 D. G. Ahn, 2021, Directed Energy Deposition (DED) Process: State of the Art, Int. J. of Precis. Eng. Manuf.-Green Tech., Vol. 8, No.2, pp. 703~742. https://doi.org/10.1007/s40684-020-00302-7   DOI
9 S.Y. Lee, I.K. Lee, M.S. Jeong, J.W. Lee, S.B. Lee, S.K. Lee, 2017, Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing. J. Korean Soc. Manufact. Process Engineers, Vol.16, No.4, pp.9-15. DOI: https://doi.org/10.14775/ksmpe.2017.16.4.009   DOI
10 J. Horvath, R. Cameron, 2020, Metal 3D Printing and Casting. In Mastering 3D Printing (pp. 261-288). Apress, Berkeley, CA.
11 H.J. Kim, 2017, 3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions. J. Korean Soc. Precision Engineering, Vol.16, No.4, pp.1-8. https://doi.org/10.14775/ksmpe.2017.16.4.001   DOI
12 P. Ninpetch, P. Kowitwarangkecl, S. Mahathanabodee et al., 2020, A review of computer simulations of metal 3D printing, AIP Conf. Proceed., Vol.2279, 050002. https://doi.org/10.1063/5.0022974   DOI
13 S.J. Choi, Y.H. Bae, I.H. Lee, H. Kim, 2018, Latest Research Trends of 3D Printing in Korea. J. Korean Soc. Precision Engineering, Vol.35, No.9, pp.829-834. DOI:10.7736/KSPE.2018.35.9.829   DOI
14 https://www.spoolstreet.com/threads/turbo-manifold3d-printed-from-inconel-powder.7080/
15 M.P. Hong, W.S. Kim, J.H. Sung, D. H. Kim, K.M., Bae, Y.S. Kim, 2018, High-performance eco-friendly trimming die manufacturing using heterogeneous material additive manufacturing technologies. Int. J. Precision Engineering Manufact.-Green Technology, Vol.5(1), 133-142. DOI : 10.1007/s40684-018-0014-9   DOI
16 10 companies offering cutting-edge 3D printing simulation software, amfg.ai/2018/09/20/10
17 M.C. Kang, 2020, Additive Manufacturing(3D Printing) Metal Powder Manufacturing Method and Evaluation Technology, KOSEN Report, 1-8.
18 3D Printing in the Automotive Industry: 4 Major Digital Manufacturing Trends, https://amfg.ai/2020/09/03/3dprinting-in-the-automotive-industry-4-major-digitalmanufacturing-trends/
19 J.W.Choi, H.C. Kim, 2015, 3D printing technologiesa review. J. Korean Soc. Manufact. Process Engineers, Vol.14, No.3, pp.1-8. https://doi.org/10.14775/ksmpe.2015.14.3.001   DOI
20 C.K.Chua, K.F. Leong, 2014, 3D Printing and additive manufacturing: Principles and applications (with companion media pack)-of rapid prototyping, 4th Ed.. World Scientific Publishing Company. https://doi.org/10.1142/9008   DOI
21 I. Campbell, O.Diegel, J. Kowen, T.Wohlers, 2017. Wohlers Report 2017 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report.H.
22 S. Ole, M. Kurt, 2013, Topology optimization approaches. Structural and Multidisciplinary Optimi zation. Vol.48, No.6, pp.1031-1055. doi:10.1007/s00158-013-0978-6.   DOI
23 D.G. Ahn, 2016, Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int. J. Precision Engineering Manufact.-Green Technology, Vol.3, No.4, pp.381-395. DOI: 10.1007/s40684-016-0048-9   DOI
24 H. Kyogoku, T. Ikesyoji, 2017, Basis of Metal 3D Additive Manufacturing. Nikkan Kogyo Shimbun.
25 3D Printing Market Size, Share & Trends Analysis Report By Component (Hardware, Software, Services), By Printer Type, By Technology, By Software, By Application, By Vertical, By Region, And Segment Forecasts, 2022 - 2030. https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis
26 S. Gorsse, C.R. Hutchinson, M. Goune , R Banerjee, 2017, Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys, Science and Technology of Advanced Materials, Vol.18, No.1, pp.584-610, DOI: 10.1080/14686996.2017.136130   DOI
27 B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, et al., 2021, Metal additive manufacturing in aerospace: A review, Materials & Design, Vol.2009, No.1, 110008. https://doi.org/10.1016/j.matdes.2021.110008   DOI
28 E.M. Sefene, Y. M. Hailu, A.A.Tsegaw, 2022, Metal hybrid additive manufacturing: state-of-the-art, Progress Additive Manuf., Vol.7, pp.737-749   DOI
29 Nguyen P. Van, 2020, FEM study for additive manufacturing process, Master Degree Thesis, Kyungpook National University.
30 Y.I. Kwon, M.C. Kang, Y.C. Kim, C.J.Bae, S. B. Lee, 2021, A study on ways to vitalize the 3D printing industry, KISTI, pp.13-16.
31 JJ. Lewandowski, M. Seifi, 2016, Metal additive manufacturing: a review of mechanical properties. Annual. Rev. Mater. Res., Vol.46 , pp.151-186. https://doi.org/10.1146/annurev-matsci-070115-032024   DOI
32 X. Zhang et.al., 2020, Evolution of microstructure, residual stress, and tensile properties of additively manufactured stainless steel under heat treatments, J. Metal, Vol.72, pp. 4167-4177. https://www.osti.gov/servlets/purl/1784911
33 P.Edwards, M.Ramulu, 2014, Fatigue performance evaluation of selective laser melted Ti-6Al-4V, Materials Science and Engineering- A, Vol.598, No.26, pp. 327-337. https://doi.org/10.1016/j.msea.2014.01.041   DOI
34 P. Li, 2016, On the Fatigue Performance of Manufactured Ti-6Al-4V to Enable Rapid Qualification for Aerospace Applications, Conf., AIAA 2016 SciTech, DOI:10.2514/6.2016-1656   DOI
35 M.Pagan, T. Ohmura, L.Wang, S. Zinkle, 2022, Strengthening effect at dissimilar metal interfaces created by ultrasonic additive manufacturing, Metal. Materials Trans. A, Vol.53, pp.3547-3564.   DOI
36 A.H.Chern, P.Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K.Liaw, C.E. Duty, 2019, A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. Int. J. Fatigue, Vol.119, pp.173-184. https://doi.org/10.1016/j.ijfatigue.2018.09.022   DOI
37 H. Espera Jr. et al, 2022, Advancing flexible electronics and additive manufacturing, Jpn. J. Appl. Phys., Vol. 61, SE0803
38 https://www.ge.com/additive/blog/ge-aviation-and-ge-additive-engineers-have-switched-four-existing-parts-castings-metal-3d
39 Y. Bozkurt, E. Karayel, 2021, 3D printing technology; methods, biomedical applications, future opportunities and trends, J. Mater. Research Technol.,Vol.14, pp.1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050   DOI
40 J.P.M. Pragana, R.F.V. Sampaio, I.M.F. Braganca, C.M.A. Silva , P.A.F. Martins, 2021, Hybrid metal additive manufacturing: A state-of-the-art review, Advances Ind. Manuf. Engng., Vol.2, 100032. https://doi.org/10.1016/j.aime.2021.100032   DOI
41 Hybrid Additive Manufacturing Machine Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027) https://m.giikorea.co.kr/report/moi906952-hybrid-additive-manufacturing-machine-market.html
42 https://kr.dmgmori.com/products/machines/additive-manufacturing/powder-nozzle/lasertec-6600-ded-hybrid
43 B.Gross, S.Y. Lockwood, D.M. Spence, 2017, Recent advances in analytical chemistry by 3D printing. Analytical chemistry, Vol.89, No.1, pp.57-70. https://doi.org/10.1021/acs.analchem.6b04344   DOI
44 https://www.3dnatives.com/en/the-role-of-am-in-the-automotive-industry/
45 L.Yang, K.Hsu, B. Baughman, D. Godfrey, F. Medina, , M. Menon, S. Wiener, 2017, Additive manufacturing of metals: the technology, materials, design and production (pp. 45-61). Cham: Springer. ISBN: 978-3-319-55128-9
46 ASTM. (2012) ASTM. (2012). Standard Specification for Additive Manufacturing Technologies ASTM F2792-12a. ASTM International. https://www.additivemanufacturing.media/articles/standards-for-additive-manufacturing
47 B.C.Gross, J.L. Erkal, S.Y. Lockwood, C.Chen, D.M.Spence, 2014, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. Vol.86, No.7, pp. 3240-3253, https://doi.org/10.1021/ac403397r   DOI
48 A. Ambrosi, J.G.Moo, M. Pumera, 2016, Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Advanced Functional Materials, Vol.26, No.5, pp.698-703. https://doi.org/10.1002/adfm.201503902   DOI
49 A. Goulas, J.G. Binner, R.A.Harris, R.J.Friel, 2017. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, Vol.6, pp.54-61. https://doi.org/10.1016/j.apmt.2016.11.004   DOI
50 A.H.Loo, C.K.Chua, M. Pumera, 2017, DNA biosensing with 3D printing technology. Analyst, Vol.142, No.2, 279-283. DOI:10.1039/c6an02038k   DOI
51 A. Ambrosi, M. Pumera, 2016, 3D-printing technologies for electrochemical applications. Chemical Society Reviews, Vol.45, No.10, pp.2740-2755. https://doi.org/10.1039/C5CS00714C   DOI
52 J.F.Xing, M.I. Zheng, X.M.Duan, 2015, Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews, Vol.44, No.15, pp.5031-5039. DOI:10.1039/C5CS00278H   DOI
53 B. Kianian, 2016, Wohlers Report 2016~2022, 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report: Chapter title: The Middle East. https://wohlersassociates.com/reports/
54 C.K. Chua, V.M. Matham, Y.J. Kim, 2017, Lasers in 3D printing and manufacturing. https://doi.org/10.1142/9500   DOI
55 S. Dadhania , R. Colins Metal Additive Manufacturing 2022-2032: Technology and Market Outlook, https://www.idtechex.com/en/research-report/metaladditive-manufacturing-2022-2032-technology-andmarket-outlook/861
56 D.G. Ahn, 2021, Directed Energy Deposition (DED) Process: State of the Art, Int.J. Precis. Eng. Manuf.- Green Tech., Vol.8, No.2, pp.703~742. https://doi.org/10.1007/s40684-020-00302-7   DOI
57 K. Lee, 2021, Economics of technological leapfrog gging. The Challenges of Technology and Economic Catch-up in Emerging Economies, 123. https://www.unido.org/api/opentext/documents/download/16414872/unido-file-16414872
58 A. Dass, A. Moridi, 2019, State of the art in directed energy deposition: From additive manufacturing to materials design, Coatings, 9(7), pp.418. https://doi.org/10.3390/coatings9070418   DOI