Browse > Article
http://dx.doi.org/10.5228/KSTP.2022.31.2.96

Multi-point Dieless Forming Technology Using Local Heating Effect  

Park, J.W. (Korea Institute of Industrial Technology)
Publication Information
Transactions of Materials Processing / v.31, no.2, 2022 , pp. 96-102 More about this Journal
Abstract
The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.
Keywords
Multi-point dieless forming; Local heating effect; Heating cartridges; Experimental study;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Abosaf, K. Essa, A. Alghawail, A. Tolipov, S. Su, 2017, Optimisation of multi-point forming process parameters, Int. J. Adv. Manuf. Technol., Vol 92, pp. 1849~1859 https://doi.org/10.1007/s00170-017-0155-y   DOI
2 I. K. Lee, S. Y. Lee, M. S. Jeong, B. M. Kim, S. K. Lee, 2018, Numerical Study on Forming Characteristics of Hot Multi-Point Forming Die, Trans. Mater. Process., Vol. 27, No. 4, pp. 236~243. https://doi.org/10.5228/KSTP.2018.27.4.236   DOI
3 S. M. Choi, S. Y. Kim, J. H. Lim, J. W. Lee, M. K. Jeong, M. S. Kim, 2020, Calculation of Carbon Credit by Supplied Steam Quality in Industrial Cogeneration Plants, Trans. Kor. Soc. Mech. Eng. B, Vol. 44, No. 12, pp. 735~740. https://doi.org/10.3795/KSME-B.2020.44.12.735   DOI
4 Z. Y. Cai, S. H. Wang, X. D. Xu, M. Z. Li, 2009, Numerical simulation for the multi-point stretch forming process of sheet metal, J. Mater. Process. Technol., Vol. 209, pp. 396~407. https://doi.org/10.1016/j.jmatprotec.2008.02.010   DOI
5 Q. F. Zhang, Z. Y. Cai, Y. Zhang, M. Z. Li, 2013, Springback compensation method for doubly curved plate in multi-point forming, Mater. Des., Vol. 47, pp. 377~385. https://doi.org/10.1016/j.matdes.2012.12.005   DOI
6 J. W. Park, J. Kim, B. S. Kang, 2019, Development on a Prediction Model for Experimental Condition of Flexibly Reconfigurable Roll Forming Process, Metals. Vol. 9, No. 8, pp.896 https://doi.org/10.3390/met9080896   DOI
7 S. C. Heo, Y. H. Seo, H. G. Noh, T. W. Ku, B. S. Kang, 2010, Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process, Trans. Kor. Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 549~556. https://doi.org/10.3795/KSME-A.2010.34.5.549   DOI
8 Q. Q. Liu, C. Lu, W. Z. Fu, K. Tieu, M. Z. Li, X. P. Gong, 2013, Optimization of Cushion Conditions in Micro Multi-Point Sheet Forming, J. Mater. Process. Technol., Vol. 212, No. 3, pp. 672~677. https://doi.org/10.1016/j.jmatprotec.2011.07.015   DOI
9 J. W. Park, T. W. Ku, J. Kim, B. S. Kang, 2014, Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming, Trans. Mater. Process., Vol. 23, No. 8, pp. 482~488. http://dx.doi.org/10.5228/KSTP.2014.23.8.482   DOI
10 J. S. Yoon, J. Kim, B. S. Kang, 2016, Deformation analysis and shape prediction for sheet forming using flexibly reconfigurable roll forming, J. Mater. Process. Technol., Vol. 233, pp. 192~205. https://doi.org/10.1016/j.jmatprotec.2016.02.005   DOI
11 Y. H. Hwang, J. M. Kim, G. Y. Hwang, N. T. Nam, M. J. Kim, 2021, Study on the Energy Source Matching of a Detachable Hybrid Electric Vehicle Using Dynamic Planning, Trans. Kor. Soc. Mech. Eng. B, Vol. 45, No. 4, pp. 245~251. https://doi.org/10.3795/KSME-B.2021.45.4.245   DOI
12 F. Feng, J. Li, R. Chen, L. Huang, H. Su, S. Fan, 2021, Multi-point die electromagnetic incremental forming for large-sized sheet metals, J. Manuf. Process, Vol. 62, pp. 458~470. https://doi.org/10.1016/j.jmapro.2020.12.022   DOI
13 I. K. Lee, S. Y. Lee, M. S. Jeong, S. K. Hwang, Y. J. Cho, B. M. Kim, D. C. Ko, S. B. Lee, S. K. Lee, 2017, Procedia Eng., Vol. 207, pp. 1165~1169. https://doi.org/10.1016/j.proeng.2017.10.1047   DOI
14 Y. H. Seo, J. W. Park, W. J. Song, B. S. Kang, J. Kim, 2014, Flexible Die Design and Springback Compensation Based on Modified Displacement Adjustment Method, Adv. Mech. Eng., Vol. 2014, Article ID 131253, pp. 1-15. https://doi.org/10.1155/2014/131253   DOI
15 M. Abebe, J. W. Park, B. S. Kang, 2017, Reliability-based robust process optimization of multi-point dieless forming for product defect reduction, Int. J. Adv. Manuf. Technol., Vol 89, pp. 1223~1234 https://doi.org/10.1007/s00170-016-9172-5   DOI
16 X. Y. Huang, J. Zhao, G. C. Yu, Q. D. Meng, Z. K. Mu, Y. J. Liu, 2021, Multi-point flexible straightening process by reciprocating bending for metal profiles, Tran. Nonferrous. Met. Soc. China, Vol. 31, pp. 2039~2050. https://doi.org/10.1016/S1003-6326(21)65636-4   DOI