Browse > Article
http://dx.doi.org/10.5228/KSTP.2019.28.3.130

Electrically Assisted Springback Control of Titanium Alloys and its Industrial Application  

Jeong, Y.H. ((재)울산테크노파크 자동차기술지원단)
Hong, S.T. (울산대학교 기계공학부)
So, H.W. (LG전자 소재부품기술원)
Jeong, H.J. (서울대학교 재료공학부)
Han, H.N. (서울대학교 재료공학부)
Publication Information
Transactions of Materials Processing / v.28, no.3, 2019 , pp. 130-134 More about this Journal
Abstract
Electrically assisted (EA) springback reduction of grade 2 titanium alloys is demonstrated through u-bending experiments. A single pulse of electric current having a short duration of less than 0.5 sec is applied to a specimen during u-bending. The effect of the electric current condition on the resultant springback is then evaluated. The experimental result shows that the springback of the selected grade 2 titanium alloy could almost be eliminated through application of electric current with a duration less than 0.5 sec prior to unloading. Lastly, an exemplary industrial application of EA springback control is presented.
Keywords
Titanium alloy; Springback; Electrically assisted;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ASM Int., 1990, ASM Metals Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM Int., Vol. 2.
2 Jr. Strunk, J. Matthew, 2000, Titanium: a Technical Guide 2nd ed., ASM Int.
3 W. D. Carden, L. L. Geng, D. K. Matlock, R. H. Wagoner, 2002, Measurement of Springback, Int. J. Mech. Sci. Eng., Vol. 44, No. 1, pp. 79-101.   DOI
4 J. H. Song, H. Huh, S. H. Kim, 2007, A Simulation-Based Design Parameter Study in the Stamping Process of an Automotive Member, J. Mater. Process. Technol., Vol. 189, No.1-3, pp. 450-458.   DOI
5 R. H. Wagoner, M. Li, 2007, Simulation of Springback: Through-Thickness Integration, Int. J. Plast., Vol. 23, No. 3, pp. 345-360.   DOI
6 H. S. Cheng, J. Cao, Z. C. Xia, 2007, An Accelerated Springback Compensation Method, Int. J. Mech. Sci., Vol. 49, No. 3, pp. 267-279.   DOI
7 R. Lingbeek, J. Huetnik, S. Ohnimus, M. Petzoldt, 2005, The Development of a Finite Elements Based Springback Compensation Tool for Sheet Metal Products, J. Mater. Process. Technol., Vol. 169, No. 1, pp. 115-125.   DOI
8 J. Yanagimoto, K. Oyamada, 2005, Springback of High-Strength Steel after Hot and Warm Sheet Formings, Cirp-Annals, Vol. 54, No. 1, pp. 213-216.   DOI
9 Z. Zhang, H. Zhang, Y. Shi, N. Moser, H. Ren, K. F. Ehmann, J. Cao, 2016, Springback Reduction by Annealing for Incremental Sheet Forming, Procedia Manuf, Vol. 5, pp. 696-706.   DOI
10 H. Yang, X. Fan, Z. Sun, L. Guo, M. Zhan, 2011, Recent Developments in Plastic FormingTechnology of Titanium Alloys, Sci. China Technol. Sci., Vol. 54, No.2, pp. 490-501.   DOI
11 S. Toros, F. Ozturk, I. Kacar, 2008, Review of Warm Forming of Aluminum-Magnesium Alloys, J. Mater. Process. Technol., Vol. 207, No. 1-3, pp. 1-12.   DOI
12 J. Hirsch, T. Al-Samman, 2013, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., Vol. 61, No. 3, pp. 818-843.   DOI
13 M. -S. Kim, T. V. Nguyen, H. -H. Yu, S. -T. Hong, H. -W. Lee, M. -J. Kim, H. N. Han, 2014, Effect of electric current density on the mechanical property of advanced high strength steels under quasi-static tensile loads, Inter. J. of Precis. Eng. and Manuf., Vol. 15, No. 6, pp.1207-1213.   DOI
14 J. R. Cho, S. J. Moon, Y. H. Moon, S. S. Kang, 2003, Finite Element Investigation on Springback Characteristics in Sheet Metal U-Bending Process, J. Mater. Process. Technol., Vol. 141, No. 1, pp. 109-116.   DOI
15 O. Troitskii, 1969, Electromechanical Effect in Metals", ZhETF Pisma Redaktsiiu, Vol. 10, pp. 18-22.
16 J. -H. Roh, J. -J. Seo, S. -T. Hong, M. -J. Kim, H. N. Han, J. T. Roth, 2014, The Mechanical Behavior of 5052-H32 Aluminum Alloys under a Pulsed Electric Current, Int. J. Plast., Vol. 58, pp. 84-99.   DOI
17 H. Conrad, 2000, Effects of Electric Current on Solid State Phase Transformations in Metals, Mater. Sci. and Eng.: A, Vol. 287, No. 2, pp. 227-237.   DOI
18 H. Conrad, 2000, Electroplasticity in Metals and Ceramics, Mater. Sci. and Eng.: A, Vol. 287, No.2, pp. 276-287.   DOI
19 W. A. Salandro, J. J. Jones, T. A. McNeal, J. T. Roth, S. -T. Hong, M. T. Smith, 2010, Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments, J. Manuf. Sci. Eng., Vol. 132, No.5, pp. 051016-1-11.   DOI
20 S. -T. Hong, Y. -H. Jeong, M. N. Chowdhury, D. -M. Chun, M, -J. Kim, H. N. Han, 2015, Feasibility of Electrically Assisted Progressive Forging of Aluminum 6061-T6 Alloy, CIRP Annals - Manuf. Technol., Vol. 64, No. 1, pp. 277-280.   DOI
21 N. T. Thien, Y. -H. Jeong, S. -T. Hong, M. -J. Kim, H. N. Han, M. -G. Lee, 2016, Electrically Assisted Tensile Behavior of Complex Phase Ultra-High Strength Steel, Inter. J. of Precis. Eng. and Manuf.-Green Technol., Vol. 3, No.4, pp. 325-333.   DOI
22 M. -J. Kim, K. Lee, K. H. Oh, I. -S. Choi, H. -H. Yu, S. -T. Hong, H. N. Han, 2014, Electric Current-Induced Annealing during Uniaxial Tension of Aluminum Alloy", Scr. Mater., Vol. 75, pp. 58-61.   DOI