Browse > Article

Yield Functions for Sheet Metal Forming Applications  

Noh, W. (Department of Materials Science and Engineering, Korea University)
Lee, M.G. (Department of Materials Science and Engineering, Korea University)
Publication Information
Transactions of Materials Processing / v.25, no.4, 2016 , pp. 275-282 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. N. Chou, C. Hung, 1999, Finite Element Analysis and Optimization on Springback Reduction, Int. J. Mach. Tools Manuf., Vol. 39, No. 3, pp. 517~536.   DOI
2 R. W. Lewis, K. Ravindran, 2000, Finite Element Simulation of Metal Casting, Int. J. Numer. Methods Eng., Vol. 47, No. 1-3, pp. 29~59.   DOI
3 A.D. Santos, J.F. Duarte, A. Reis, B. da Rocha, R. Neto, R. Paiva, 2001, The Use of Finite Element Simulation for Optimization of Metal Forming and Tool Design, J. Mater. Process. Technol., Vol. 119, No. 1-3, pp. 152~157.   DOI
4 D. L. McDowell, 2010, A Perspective on Trends in Multiscale Plasticity, Int. J. Plast., Vol. 26, No. 9, pp. 1280~1309.   DOI
5 J. C. Simo, 1988, A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation, Computer Methods in Applied Mechanics and Engineering, Vol. 66, No. 2, pp. 199~219.   DOI
6 H. E. Tresca, 1864, MéMoire Sur L'éCoulement Des Corps Solides Soumis à De Fortes Pressions, Paris, Gauthier-Villars.
7 Y. Zhou, L. Yang, Y. Huang, 2013, Micro-and Macromechanical Properties of Materials, CRC Press.
8 R. V. Mises, 1913, Mechanik Der Festen Körper Im Plastisch-Deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Vol. 1913, pp. 582~592.
9 A. V. Hershey, 1954, The Plasticity of an Isotropic Aggregate of Anisotropic Face-Centered Cubic Crystals, Journal of Applied Mechanics-Transactions of the Asme, Vol. 21, No. 3, pp. 241~249.
10 W. F. Hosford, 1972, A Generalized Isotropic Yield Criterion, J. Appl. Mech., Vol. 39, No. 2, pp. 607~609.   DOI
11 S. Hashmi, 2014, Comprehensive Materials Processing, Newnes.
12 O. Cazacu, B. Plunkett, F. Barlat, 2006, Orthotropic Yield Criterion for Hexagonal Closed Packed Metals, Int. J. Plast., Vol. 22, No. 7, pp. 1171~1194.   DOI
13 T. Rogers, 1987, Yield Criteria, Flow Rules, and Hardening in Anisotropic Plasticity, Yielding, Damage, and Failure of Anisotropic Solids, pp. 53~79.
14 Z. Sobotka, 1969, Theorie Des Plastischen Fliessens Von Anisotropen Körpern, Z. Angew. Math. Mech., Vol. 49, No. 1‐2, pp. 25~32.   DOI
15 A. P. Karafillis, M. C. Boyce, 1993, A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor, J. Mech. Phys. Solids, Vol. 41, No. 12, pp. 1859~1886.   DOI
16 R. V. Mises, 1928, Mechanik Der Plastischen Formänderung Von Kristallen, Z. Angew. Math. Mech., Vol. 8, No. 3, pp. 161~185.   DOI
17 R. Hill, 1948, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London, Ser. A-Mathematical and Physical Sciences, Vol. 193, No. 1033, pp. 281~297.   DOI
18 F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, E. Chu, 2003, Plane Stress Yield Function for Aluminum Alloy Sheets-Part 1: Theory, Int. J. Plast., Vol. 19, No. 9, pp. 1297~1319.   DOI
19 S. Panich, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, 2012, Anisotropic Plastic Behavior of Trip 780 Steel Sheet in Hole Expansion Test, Key Eng. Mater., Trans Tech Publ. Vol. 504, pp. 89~94.
20 F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, R. E. Dick, 2005, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., Vol. 21, No. 5, pp. 1009~1039.   DOI
21 J. Yoon, F. Barlat, R. Dick, Plane Stress Yield Function for Aluminum Alloy Sheet: Fe Formulation and Its Implementation, 2004 ABAQUS Users' Conference.