Browse > Article
http://dx.doi.org/10.5228/KSTP.2014.23.2.103

Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal  

Son, S.E. (Dept. of Aerospace Engineering, Pusan National University)
Yoon, J.S. (Dept. of Aerospace Engineering, Pusan National University)
Kim, J. (Dept. of Aerospace Engineering, Pusan National University)
Kang, B.S. (Dept. of Aerospace Engineering, Pusan National University)
Publication Information
Transactions of Materials Processing / v.23, no.2, 2014 , pp. 103-109 More about this Journal
Abstract
Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.
Keywords
Flexibly-Reconfigurable Roll Forming; Reconfigurable Roller; Multi-Curved Shape; FEM;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, G. H. Song, S. J. Lee, B. M. Kim, 2013, Prediction of Three-Dimensional Strip Profile for 6- High Mill in Thin-Strip Rolling, Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 8, pp. 855-861.   과학기술학회마을   DOI   ScienceOn
2 W F. Hosford, R, M. Caddell, 2011, Metal Forming Mechanics and Metallurgy, Cambridge University, New York, p. 101.
3 M. Z. Li, Z. Y. Cai, Z. Sui, Q. G. Yan, 2002, Multi- Point Forming Technology for Sheet Metal, J. Mat. Proc. Tech., Vol. 129, No. 1, pp. 333-338.   DOI   ScienceOn
4 D. S. Shim, D. Y. Yang, K. H. Kim, S. W. Chung, M. S. Han, 2010, Investigation into Forming Sequence for the Incremental Forming of Doubly Curved Plates Using the Line Array Roll Set (LARS) Process, Int. J. Mach. Tools Manuf., Vol. 50, No. 2, pp. 214-218.   DOI
5 F. X. Tan, M. Z. Li, Z. Y. Cai, 2007, Research on the Process of Multi-Point Forming for the Customized Titanium Alloy Cranial Prosthesis, J. Mat. Proc. Tech., Vol. 187-188, pp. 453-457.   DOI
6 J. W. Park, Y. S. Hong, S. H. Lim, 2000, Dieless Forming Apparatus, US Patent: 6151938.
7 S.C. Heo, Y. H. Seo, H. G. Noh, T. W. Ku, B. S. Kang, 2010, Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process, Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 549-556.   과학기술학회마을   DOI   ScienceOn
8 S. C. Heo, Y. H. Seo, T. W. Ku, J. Kim, B. S. Kang, 2009, Study on Application of Flexible Die to Sheet Metal Forming Process, Trans. Mater. Process, Vol. 18, No. 7, pp. 556-564.   DOI
9 B. S. Kang, J. S. Yoon, 2013, Sheet Forming Apparatus with Flexible Rollers, KR Patent: 10-1309228.
10 Z. Y. Cai, S. H. Wang, X. D. Xu, M. Z. Li, 2009, Numerical Simulation for the Multi-point Stretch Forming Process of Sheet Metal, J. Mater. Process. Technol. Vol. 209, No. 1, pp. 396-407.   DOI   ScienceOn
11 T. H. Yi, K. T. Kim, S. M. Ahn, D. S. Lee, 2011, Technical Development Trend and Analysis of Futuristic Personal Air Vehicle, Current Industrial and Technological Trend in Aerospace, Vol. 9, No. 1, pp. 64-76.
12 J. Y. Hwang, S. M. Choi, S. H. Jeong, 2003, Strategies for Building Up Capabilities in the Korean Aircraft Sub-System Industry, J. Kor. Technol. Innovation Society, Special Volume, pp. 551-568.   과학기술학회마을
13 J. S. Yoon, S. E. Son, W. J. Song, J. Kim, B. S. Kang, 2013, Flexible Roll Forming Technology for Multi- Curved Sheet Metal Forming, Trans. Mater. Process, Vol. 22, No.5, pp.243-249.   DOI