Browse > Article
http://dx.doi.org/10.5228/KSTP.2013.22.4.216

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer  

Ho, K. (Keimyung University, Department of Mechanical Engineering)
Publication Information
Transactions of Materials Processing / v.22, no.4, 2013 , pp. 216-222 More about this Journal
Abstract
Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].
Keywords
Constitutive Model; Viscoplasticity; Polymer; Relaxation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Ho, 2011, An Improved Constitutive Model of Shape Memory Alloy, Trans. Mater. Process., Vol. 20, No. 5, pp. 350-356.   과학기술학회마을   DOI   ScienceOn
2 J. Lemaitre, J. L. Chaboche, 1998, Mechanics of Solid Materials, Cambridge University Press, United Kingdom.
3 D. C. Stouffer, L. T. Dame, 1996, Inelastic Deformation of Metals, John Wiley & Sons, New York.
4 A. S. Krausz, K. Krausz, 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, San Diego.
5 K. Ho, 2001, Modeling of Nonlinear Rate Sensitivity by Using an Overstress Model, Comput. Model. Eng. Sci., Vol. 2, No. 3, pp. 351-364.
6 K. Ho, 2008, Effect of the Rate Dependence of Nonlinear Kinematic Hardening Rule on Relaxation Behavior, Int. J. Solids Struct., Vol. 45, No. 3-4, pp. 821-839.   DOI   ScienceOn
7 K. Ho, 2006, Unified Constitutive Equations of Viscoplastic Deformation: Development and Capabilities, JSME Int J., Ser. A, Vol. 49, No. 1, pp. 138-146.   DOI   ScienceOn
8 N. G. McCrum, C. P. Buckley, C. B. Bucknall, 1997, Principles of Polymer Engineering, Second Ed., Oxford University Press.
9 H. F. Brinson, L. C. Brinson, 2010, Polymer Engineering Science and Viscoelasticity: An introduction, Springer.
10 A. S. Argon, 1973, A Theory for the Lowtemperature Plastic Deformation of Glassy Polymers, Philos. Mag., Vol. 28, No. 2, pp. 839-865.   DOI   ScienceOn
11 M. C. Boyce, D. M. Parks, A. S. Argon, 1988, Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model, Mech. Mater., Vol. 7, No. 1, pp. 15-33.   DOI   ScienceOn
12 E. Giessen, 1997, Localized Plastic Deformation in Glassy Polymers, Eur. J. Mech. A/Solids, Vol. 16, pp. 87-106.
13 R. B. Dupaix, M. C. Boyce, 2007, Constitutive Modeling of the Finite Strain Behavior of Amorphous Polymers In and Above the Glass Transition, Mech. Mater., Vol. 39, No. 1, pp. 39-52.   DOI   ScienceOn
14 D. M. Parks, S. Azhi, 1990, Polycrystalline Plastic Deformation and Texture Evolution for Crystals Lacking Five Independent Slip Systems, J. Mech. Phys. Solids, Vol. 38, No. 5, pp. 701-724.   DOI   ScienceOn
15 B. J. Lee, D. M. Parks, S. Ajzi, 1993, Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semicrystalline Polymers, J. Mech. Phys. Solids, Vol. 41, No. 10, pp. 1651-1687.   DOI   ScienceOn
16 J. Dommelen, D. M. Parks, M. C. Boyce, W. Brekelmans, F. Baaijens, 2003, Micromechanical Modeling of the Elasto-viscoplastic Behavior of Semi-crystalline Polymers, J. Mech. Phys Solids, Vol. 51, No. 3, pp. 519-541.   DOI   ScienceOn
17 A. D. Drozdov, J. Christiansen, 2007, Cyclic Viscoplasticity of High-density Polyethylene: Experiments and Modeling, Comput. Mater. Sci., Vol. 39, No. 2, pp. 465-480.   DOI   ScienceOn
18 A. Rozanski, A. Galeski, 2013, Plastic Yielding of Semicrystalline Polymers Affected by Amorphous Phase, Int. J. Plast., Vol. 41, pp. 14-29.   DOI   ScienceOn
19 R. W. Meyer, L. A. Pruitt, 2001, The Effect of Cyclic True Strain on the Morphology, Structure, and Relaxation Behavior of Ultra High Molecular Weight Polyethylene, Polym., Vol. 42, No. 12, pp. 5293-5306.   DOI   ScienceOn
20 A. Galeski, 2003, Strength and Toughness of Crystalline Polymer Systems, Prog. Polym. Sci., Vol. 28, No. 12, pp. 1643-1699.   DOI   ScienceOn
21 S. G. Bardenhagen, M. G. Stout, G. T. Gray, 1997, Three-dimensional, Finite Deformation, Viscoplastic Constitutive Models for Polymeric Materials, Mech. Mater., Vol. 25, No. 4, pp. 235-253.   DOI   ScienceOn
22 C. Zhang, I.D. Moore, 1997, Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling, Polym. Eng. Sci., Vol. 37, No. 2, pp. 414-420.   DOI   ScienceOn
23 K. Ho, 1998, Application of the Viscoplasticity Based on Overstress to the Modeling of Dynamic Strain Aging of Metals and to the Modeling of the Solid Polymers Specifically to Nylon 66, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY.
24 E. Kremp, K. Ho, 2000, An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66, ASTM STP 1357, pp. 118-137.
25 E. Krempl, F. Khan, 2003, Rate (time)-dependent Deformation Behavior: An Overview of Some Properties of Metals and Solid Polymers, Int. J. Plast., Vol. 19, No. 7, pp. 1069-1095.   DOI   ScienceOn
26 K. Ho, 2010, A Phenomenological Constitutive Model for Pseudoelastic Shape Memory Alloy, Trans. Mater. Process., Vol. 19, No. 8, pp. 468-473.   과학기술학회마을   DOI   ScienceOn