Browse > Article
http://dx.doi.org/10.5228/KSTP.2012.21.7.412

Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine  

Yoo, G.Y. (재료연구소, 타이타늄연구실)
Kang, N.H. (부산대학교 재료공학과)
Kim, J.H. (재료연구소, 타이타늄연구실)
Hong, J.K. (재료연구소, 타이타늄연구실)
Lee, C.S. (포항공과대학 신소재공학과)
Lee, J.M. ((주)태웅, 기술연구소)
Kim, N.Y. ((주)태웅, 기술연구소)
Yeom, J.T. (재료연구소)
Publication Information
Transactions of Materials Processing / v.21, no.7, 2012 , pp. 412-419 More about this Journal
Abstract
The ingot-breakdown scheme of a tower flange material (low-alloy steel) for offshore wind turbine was investigated using finite element (FE) simulations and experimental analyses. Based on compression test results of the low-alloy steel, a deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and Ziegler's instability criterion. The deformation processing map allowed determination of the optimum process conditions for the tower flange material. Within the FE simulations of the ingot breakdown process, the Cockcroft-Latham criterion, which considers ductile fracture, was used to predict the possibility of forming defects during the hot working process. In general, the critical value for the ductile fracture of steel is 0.74. During the ingot-breakdown under optimum process conditions, the actual tower flange forgings exhibited a relatively uniform shape without any forming defects.
Keywords
Ingot-breakdown Process; Tower Flange; Offshore Wind Turbine; Finite Element(FE) Simulation; Low-alloy Steel; Deformation Processing Map;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 L. Germanisher, 2003, Rules and regulations, IV - Non-marine, Part 1 -Wind Energy, Regulation for the certification of the Wind Energy Conversion Systems, Germanischer Lloyd, Hamburg, Chapter 1-11.
2 S. H. Cho, S. I. Kim, Y. C. Yoo, 1998, The EF Fects of Deformation Variables on Hot Workability of Austenitic Stainless Steel, Met. Mater. Int., Vol. 4, No. 4, pp. 732-736.   DOI
3 E. J. Jung, J. T. Yeom, J. H. Kim, D. G. Lee , N. K. Park, C. S. Lee, 2006, Evaluation of High Temperature Workability of A350 LF2 using the Deformation Processing Map, Trans. Mater. Process., Vol.15, No.4, pp. 333-339.   과학기술학회마을   DOI
4 Y. V. R. K. Prasad, T. Seshacharyulu, 1998, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., Vol. 43, No. 6, pp. 243-258.   DOI
5 C. I. Garcia, G. D Wang, D. E. Camus, E. A. Loria, A. J. EdArdo, 1994, Hot Deformation Behavior of Superalloy 718, The Minerals, metals & Materials Society, TMS, USA, pp. 293-302.
6 H. Ziegler, 1963, Progress in Solid Mechanics, John Wiley and Sons. New York, NY, Vol. 4, p. 93.
7 F. Ozturk, D. Lee, 2004, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., Vol. 147, No. 3, pp. 397-404.   DOI
8 J. T. Yeom, Y. S. Na, 2002, Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake, Trans. Mater. Process., Vol. 11, No. 6, pp. 538-546.   DOI
9 J. T. Yeom, N. K. Park, C. S. Lee, 2004, Manufacturing Technology of High-Quality Superalloy Alloy 718 Billet, Trans. Mater. Process., Vol. 13, No. 8, pp. 653-662.   과학기술학회마을   DOI
10 J. Y. An, Y. J. Kwon, D. L. Lee, S. I. Kim, Y. C. Yoo, 2005, Modeling of Flow Stress and Micro-Structural Variations in Strain Induced Dynamic Transformation of Low Carbon Steel by Hot Torsion Deformation, J. Kor. Inst. Met. Mater., Vol. 43, No. 11, pp. 740-743.   과학기술학회마을
11 N. K. Park, J. T. Yeom, Y. S. Na, 2002, Characterization of Deformation Stability in Hot Forging of Conventional Ti-6Al-4V Using Processing Maps, J. Mater. Process. Technol., Vol. 130-131, pp. 540-545.   DOI
12 D. H. Kim, H. M. Kim, N. K. Park, 1992, Deformation Behavior of Superalloy 718 under Compression Load, J. Kor. Inst. Met. Mater., Vol. 30, No. 11, pp. 1393-1400.   과학기술학회마을