Browse > Article
http://dx.doi.org/10.5228/KSTP.2012.21.7.403

Finite Element Analysis of Superplastic Forming Considering Grain Growth-II. Superplastic Behavior of AZ31 Alloy  

Kim, Y.G. (충남대학교 기계설계공학과 대학원)
Kim, S.H. (한국기계연구원 부설 재료연구소)
Kwon, Y.N. (한국기계연구원 부설 재료연구소)
Kim, Y.H. (충남대학교 기계설계공학과)
Publication Information
Transactions of Materials Processing / v.21, no.7, 2012 , pp. 403-411 More about this Journal
Abstract
The aim of this study was to predict the results of superplastic forming on magnesium alloy, by considering the grain growth using numerical simulations. Superplastic behavior of AZ31 alloy was investigated through a set of uniaxial tensile tests that cover the forming temperatures ranges from 375 to $450^{\circ}C$. All the material parameters in the model, which consists of a constitutive equation and a grain growth equation, were determined. The model was used in the finite element analysis for uniaxial tensile tests and superplastic blow forming, through a user-subroutine available within ABAQUS. From this study, the effect of grain growth during forming was evaluated. The results show that it is essential to include the effect of grain growth in predicting the behavior during superplastic forming of this magnesium alloy.
Keywords
AZ31 Alloy; Superplasticity; Superplastic Blow Forming; Grain Growth; Finite Element Analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. T. Jun, 2011, A Trend on Domestic Production Technology and Information of R & D, Mach. Tool, Vol. 229, pp. 36-38.
2 ABAQUS Theory Manual., 2010, Dassault Systems Simulia Corp., Providence, RI, USA.
3 F. S. Jarrar, F. K. Abu-Farha, L. G. Hector, M. K. Khraisheh, 2009, Simulation of High-Temperature AA5083 Bulge Forming with a Hardening /Softening Material Model, J. Mater. Eng. Perform., Vol. 18, No. 7, pp. 863-870.   DOI
4 D. H. Bae, A. K. Ghosh, 2000, Grain Size and Temperature Dependence of Superplastic Deformation in an Al-Mg Alloy under Isostructural Condition, Acta Mater., Vol. 48, No. 6, pp. 1207-1224.   DOI
5 ABAQUS Analysis User's Manual., 2010, Dassault Systems Simulia Corp., Providence, RI, USA.
6 C. H. Caceres, D. S. Wilkinson, 1984, Large Strain Behaviour of a Superplastic Copper Alloy-I. Deformation, Acta Metall., Vol. 32, No. 3, pp. 415-422.   DOI
7 M. A. Nazzale, M. K. Khraisheh, 2004, Finite Element Modeling and Optimization of Superplastic Forming using Variable Strain Rate Approach, J. Mater. Eng. Perform., Vol. 13, No. 6, pp. 691-699.   DOI
8 F. K. Abu-Farha, M. K. Khraisheh, 2007, Mechanical Characteristics of Superplastic Deformation of AZ31 Magnesium Alloy, J. Mater. Eng. Perform., Vol. 16, No. 2, pp. 192-199.   DOI
9 A. K. Ghosh, C. H. Hamilton, 1979, Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy, Metall. Trans. A, Vol. 10, No. 6, pp. 699-706.   DOI
10 F. K. Abu-Farha, M. K. Khraisheh, 2007, Analysis of Superplastic Deformation of AZ31 Magnesium Alloy, Adv. Eng. Mater., Vol. 9, No. 9, pp. 777-783.   DOI
11 S. D. Kim, Y. N. Kwon, Y. S. Lee, B. M. Kim, J. H. Lee, 2006, Proc. Kor. Soc. Tech. Plast. Spring, Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 67-69.
12 D. M. Kang, 2004, Analysis of Formability of Magnesium Alloy using Finite Element Method, J. Korean Soc. Manuf. Technol., Vol. 3, No. 2, pp. 60-66.
13 G. Giuliano, S. Franchitti, 2008, The Determination of Material Parameters from Superplastic Free-Bulging Tests at Constant Pressure, Int. J. Mach. Tools Manuf., Vol. 48, No. 12-13, pp. 1519-1522.   DOI
14 D. E. Cipoletti, A. F. Bower, P. E. Krajewski, 2011, A Microstructure-Based Model of the Deformation Mechanisms and Flow Stress during Elevated-Temperature Straining of a Magnesium Alloy, Scr. Mater., Vol. 64, No. 10, pp. 931-934.   DOI
15 Y. N. Kwon, Y. S. Lee, J. H. Lee, 2006, Proc. Kor. Soc. Tech. Plast. Spring, Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 59-62.
16 W. J. Song, S. C. Heo, T. W. Ku, B. S. Kang, J. Kim, 2011, Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets, Trans. Mater. Process., Vol. 20, No. 3, pp. 229-235.   과학기술학회마을   DOI
17 H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, 2005, Modelling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures, J. Mater. Process. Technol., Vol. 164-165, pp. 1258-1262.   DOI   ScienceOn
18 W. S. Lee, 2006, A Trend on Manufacturing of Parts using Magnesium Alloy, Mach. Ind., Vol. 36, No. 7, pp. 104-109.
19 E. M. Taleff, L. G. Hector, R. Verma, P. E. Krajewski, J. K. Chang, 2010, Material Models for Simulation of Superplastic Mg Alloy Sheet Forming, J. Mater. Eng. Perform., Vol. 19, No. 4, pp. 488-494.   DOI
20 R. Verma, L. G. Hector, P. E. Krajewski, E. M. Taleff, 2009, The Finite Element Simulation of High-Temperature Magnesium AZ31 Sheet Forming, JOM, Vol. 61, No. 8, pp. 29-37.   DOI   ScienceOn