Browse > Article
http://dx.doi.org/10.5228/KSTP.2012.21.3.207

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy  

Yoon, D.H. (재료연구소 융합공정연구본부)
Jung, J.E. (POSTECH 신소재공학과)
Chang, Y.W. (POSTECH 신소재공학과)
Lee, J.H. (재료연구소 산업기술지원본부)
Lee, K.S. (재료연구소 융합공정연구본부)
Publication Information
Transactions of Materials Processing / v.21, no.3, 2012 , pp. 207-214 More about this Journal
Abstract
High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.
Keywords
Ni-Fe-Co Alloy; High Temperature Deformation; Open Die Forging; Coefficient of Thermal Expansion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. W. Liu, F. Valenza, M. L. Muolo, A. Passerone, 2010, SiC/SiC and SiC/Kovar Joining by Ni-Si and Mo Interlayers, J. Mater. Sci., Vol. 45, No. 16, pp. 4299-4307.   DOI
2 H.W. Carpenter, 1976, Alloy 903 Helps Space Shuttle Ply., Met. Prog., Vol. 110, No. 3, pp. 25-29.
3 S. Wang, J. Guo, W. Lai, Y. Ge, M. Tan, H. Li, 1991, Microstructure and Mechanical Properties of Fe-Ni-Co-based Superalloy after Longterm aging at $650^{\circ}C$, Acta Metall. Sinica, Vol. 4, No. 3, pp. 194-198.
4 K. A. Lee, J. H. Park, B. H. Cho, J. Namgung, 2003, Hot Deformation and Thermal Expansion Behavior of Fe-Ni-Co Low Thermal Expansion Alloy, J. Kor. Inst. Met. Mater., Vol. 41, No. 9, pp. 539-550.
5 T. Sakai, 1995, Dynamic Recrystallization Microstructures under Hot Working Conditions, J. Mater. Process. Technol., Vol. 53, Issues 1-2, pp. 349-361.   DOI
6 C. M. Sellars, W. J. M. Tegart, 1966, La relation entre la resistance et la structure dans la deformation a chaud, Mem. Scient. Revue Metall., Vol. 63, No. 9, pp. 731-746.   DOI
7 Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D.R. Barker, 1984, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, Vol. 15, No. 10, pp. 1883-1892.   DOI
8 Special Metals, 2010, www.specialmetals.com
9 Y. Wang, J. Yang, C. Ye, X. Fang, L. Zhang, 2004, Thermal Expansion of Cu Nanowire Arrays, Nanotechnol., Vol. 15, No. 11, pp. 1437-1440.   DOI
10 B. B. Panigrahi, M. M. Godkhindi, 2005, Structural Changes and Thermal Expansion Behavior of Ultrafine Titanium Powders during Compaction and Heating, J. Mater. Res., Vol. 20, No. 3, pp. 580-585.   DOI
11 L. H. Qian, S. C. Wang, Y. H. Zhao, K. Lu, 2002, Microstrain Effect on Thermal Properties of Nanocrystalline Cu, Acta Mater., Vol. 50, No. 13, pp. 3425-3434.   DOI
12 Y. Liu, L. Liu, Z. Wu, J. Li, B. Shen, W. Hu, 2010, Grain Growth and Grain Size Effects on the Thermal Expansion Properties of an Electrodeposited Fe-Ni Invar Alloy, Scr. Mater., Vol. 63, No. 4, pp. 359-362.   DOI
13 S. G. Wang, Y. Mei, K. Long, Z. D. Zhang, 2010, The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300K, Nanoscale Res. Lett., Vol. 5, No. 1, pp. 48-54.   DOI