Browse > Article
http://dx.doi.org/10.5228/KSTP.2012.21.3.151

Finite Element Analysis of Superplastic Forming Processes Considering Grain Growth (I)  

Kim, Y.G. (충남대학교 기계설계공학과 대학원)
Song, J.S. (대구기계부품연구원 차세대금형기술혁신센터)
Kim, Y.H. (충남대학교 기계설계공학과)
Publication Information
Transactions of Materials Processing / v.21, no.3, 2012 , pp. 151-159 More about this Journal
Abstract
Finite element simulations were conducted to investigate the influence of grain growth in the superplastic blow forming process. A microstructure-based constitutive model considering grain growth effects is proposed and used in the simulations. Also, a grain growth rate equation accounting for both static and dynamic grain growth is implemented. The simulations were made using a 2D plane-strain model for constrained blow forming and an axisymmetric model for free bulging. These two models showed different features during the forming stages. However, the forming pressure-time curve and the thickness distribution obtained by both simulations explained well the deformation hardening induced by the grain growth during superplastic forming. This study shows that grain growth is an important factor in determining the material behavior during superplastic deformation.
Keywords
Superplasticity; Blow Forming; Grain Growth; Deformation Hardening; Finite Element Method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. K. Ghosh, C. H. Hamilton, 1982, Influences of Material Parameters and Microstructure on Superplastic Forming, Metall. Mater. Trans. A, Vol. 13, No. 5, pp. 733-743.   DOI
2 M. A. Clark, T. H. Alden, 1973, Deformation Enhanced Grain Growth in a Superplastic Sn-1% Bi Alloy, Acta Metall., Vol. 21, No. 9, pp. 1195-1206.   DOI
3 C. H. Caceres, D. S. Wilkinson, 1984, Large Strain Behavior of a Superplastic Copper Alloy-I. Deformation, Acta Metall., Vol. 32, No. 3, pp. 415-422.   DOI
4 S. Richter, C. H. Hamilton, 1993, Deformation Enhanced Grain Growth in a Two Phase Titanium Alloy, Mater. Sci. Forum, Vol. 113-115, pp. 195-200.   DOI
5 T. K. Ha, J. R. Son, Y. W. Chang, 1998, Superplastic Deformation Behavior of a Zn-0.3wt.%Al Alloy, J. Kor. Inst. Met. Mater., Vol. 36, No. 8, pp. 1242-1248.
6 J. S. Kim, J. H. Kim, C. G. Park, C. S. Lee, 1998, Microstructural Analysis on the Creep and Superplastic Deformation of Two-Phase Ti-6Al-4V Alloy, J. Kor. Inst. Met. Mater., Vol. 36, No. 7, pp. 1046-1054.
7 O. N. Senkov, M. M. Myshlyaev, 1986, Grain Growth in a Superplastic Zn-22% Al Alloy, Acta Metall., Vol. 34, No. 1, pp. 97-106.   DOI
8 Y. H. Kim, S. S. Hong, J. S. Lee, R. H. Wagoner, 1996, Analysis of Superplastic Forming Processes using a Finite-Element Method, J. Mater. Process. Technol., Vol. 62, No. 1-3, pp. 90-99.   DOI
9 M. Bellet, E. Massoni, J. L. Chenot, 1990, Numerical Simulation of Thin Sheet Forming Processes by the Finite Element Method, Eng. Comput., Vol. 7, No. 1, pp. 21-31.   DOI
10 J. H. Yoon, H. S. Lee, Y. S. Jang, Y. M. Yi, 2003, Theoretical Analysis for Prediction of Thickness Variation in Superplastic Forming Process of Spherical Pressure Vessel, Aerosp. Technol., Vol. 2, No. 2, pp. 133-141.
11 A. A. Kruglov, F. U. Enikeev, R. Ya. Lutfullin, 2002, Superplastic Forming of a Spherical Shell out a Welded Envelope, Mater. Sci. Eng. A, Vol. 323, No. 1-2, pp. 416-426.   DOI
12 D. H. Bae, A. K. Ghosh, 2000, Grain Size and Temperature Dependence of Superplastic Deformation in an Al-Mg Alloy under Isostructural Condition, Acta Metall., Vol. 48, No. 6, pp. 1207-1224.
13 S. S. Hong, M. H. Kim, Y. H. Kim, 1995, Analysis of Superplastic Forming Processes using Finite Element Method, Trans. Kor. Soc. Mech. Eng., Vol. 19, No. 6, pp. 1411-1421.
14 A. J. Barnes, 2007, Superplastic Forming 40 Years and Still Growing, J. Mater. Eng. Perform., Vol. 14, No. 4, pp. 440-454.
15 J. M. Lee, S. S. Hong, Y. H. Kim, 1999, Blank Design for Optimized Thickness Distribution for Axi-Symmetric Superplastic Blow Forming, Trans. Mater. Process., Vol. 8, No. 1, pp. 92-100.
16 J. S. Song, Y. K. Kang, S. S. Hong, Y. N. Kwon, J. H. Lee, Y. H. Kim, 2007, Process Design of Superplastic Forming/Diffusion Bonding by using Design of Experiment, Trans. Mater. Process., Vol. 16, No. 2, pp. 144-149.   DOI
17 J. H. Lee, C. S. Lee, 1997, A Study on the Bulge Forming Process of Superplastic Ti-6Al-4V Alloy, J. Kor. Inst. Met. Mater., Vol. 35, No. 10, pp. 1325-1331.
18 A. K. Ghosh, C. H. Hamilton, 1979, Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy, Metall. Trans. A, Vol. 10, No. 6, pp. 699-706.   DOI
19 D. H. Shin, U. Y. Choi, Y. J. Joo, S. C. Maeng, 1997, Cavity Formation in a Superplastic 7075 Al Alloy, J. Kor. Inst. Met. Mater., Vol. 35, No. 9, pp. 1102-1108.
20 C. H. Hamilton, H. M. Zbib, C. H. Johnson, S. K. Richter, 1991, Superplasticity in Advanced Materials(eds. S. Hori, M. Tokizame, and N. Furushiro), The Japan Society for Research on Superplasticity, Osaka, Japan, pp. 127-133.
21 T. W. Kim, 2001, Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure, Trans. Kor. Soc. Mech. Eng. A, Vol. 25, No.12, pp. 1933-1943.
22 H. Tan, P. Gao, J. Lian, 2001, Microstructural Modeling and Numerical Analysis for the Superplastic Forming Process, Mater. Manuf. Processes, Vol. 16, No.3, pp. 331-340.   DOI
23 J. Lin, F. P. E. Dunne, 2001, Modeling Grain Growth Evolution and Necking in Superplastic Blow-Forming, Int. J. Mech. Sci., Vol. 43, No. 3, pp. 595-609.   DOI
24 B. H. Cheong, J. Lin, A. A. Ball, 2003, Modeling the Effects of Grain-Size Gradients on Necking in Superplastic Forming, J. Mater. Process. Technol., Vol. 134, No. 1, pp. 10-18.   DOI
25 M. A. Nazzale, M. K. Khraisheh, B. M. Darras, 2004, Finite Element Modeling and Optimization of Superplastic Forming using Variable Strain Rate Approach, J. Mater. Eng. Perform., Vol. 13, No. 6, pp. 691-699.   DOI