Browse > Article
http://dx.doi.org/10.5228/KSTP.2011.20.8.601

Cavitation Behavior of AZ31 Sheet during Gas Blow Forming  

Kim, S.H. (부산대학교)
Kang, N.H. (부산대학교)
Kwon, Y.N. (한국기계연구원 부설 재료연구소)
Publication Information
Transactions of Materials Processing / v.20, no.8, 2011 , pp. 601-610 More about this Journal
Abstract
Based on the facts that AZ31 magnesium alloy can be blow formed just like superplastic aluminum alloys and that most superplastic alloys fail by cavitation, the present study was undertaken to investigate the cavitation behavior of a fine-grained AZ31 sheet during blow forming at the elevated temperature. Other points of interest included the much lower strain rate and temperature dependencies of the magnesium alloy compared with conventional superplastic alloys. It was also aimed to find if cavitation in the AZ31 alloy can be suppressed by hydrostatic pressure, as is the case in most superplastic alloys. Interestingly, the application of hydrostatic pressure did not increase the blow formability of AZ31 sheet, even though it reduced the degree of cavitation. A possible reason for this behavior is discussed.
Keywords
AZ31 Sheet; Superplasticity; Blow Forming; Cavity; Hydrostatic Pressure; Grain Boundary Sliding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. C. F. Cocks, M. F. Asyby, 1982, On Creep Fracture by Void Growth, Prog. Mater Sci., Vol. 27, No. 3-4, pp. 244-244.
2 J. Pilling, R. Raj, 1985, Effect of Hydrostatic Pressure on Cavitation in Superplastic Aluminium Alloys, Acta Metall., Vol. 34, No. 4, pp. 669-679.
3 A. H. Chokshi, Amiya K. Mukherjee, 1993, The Influence of Hydrostatic Pressure on Grain Boundary Sliding in Superplasticity: Implications for Cavitation, Mater. Sci. Eng. A, Vol. 171, No. 1-2, pp. 47-54.   DOI
4 H. S. Yang, H. K. Ahmed, W. T. Robert, 1989, Process Control of Superplastic Forming under Superimposed Hydrostatic Pressure, Mater. Sci. Eng. A, Vol. 122, No. 2, pp. 193-203.   DOI
5 A. K. Ghosh, C. H. Hamilton, 1982, Influences of Material Parameter and Microstructure on Superplastic Forming, Mater. Sci., Vol. 13, No. 5, pp. 733-743.
6 M. T. Perez-Prado, 2002, Texture Evolution during Annealing of Magnesium AZ31 Alloy, Scr. Mater., Vol. 46, No. 2, pp. 149-155.   DOI
7 H. Takuda, T. Enami, K. Kubota, 2000, The Formability of a Thin Sheet of Mg 8.5 Li 1Zn Alloy, J. Mater. Process Technol., Vol. 101, No. 1-3, pp. 281-286.   DOI
8 Y. Z. Lu, Q. D. Wang, W. J. Ding, 2000, Fracture Behavior of AZ91 Magnesium Alloy, Mater. Lett., Vol. 44, No. 4, pp. 265-268.   DOI
9 N. Ogawa, M. Shiomi, K. Osakada, 2002, Forming Limit of Magnesium Alloy at Elevated Temperatures for Precision Forging, Int. J. Mach. Tools Manuf., Vol. 42, No. 5, pp. 607-614.   DOI
10 J. T. Carter, P. E. Krajewski, 2008, The Hot blow Forming of AZ31 Mg Sheet: Formability Assessment and Application Development, JOM, Vol. 60 No. 11, pp. 77-81.   DOI   ScienceOn
11 K. K. Chow, K. C. Chan, 2002, Effect of Stress State on Cavitation and Hot Forming Limits of a Coarse-Grained Al5052 Alloy, Mater. Lett., Vol. 52, No. 1-2, pp. 62-68.   DOI
12 M. K. Khraisheh, F. K. Abu-Farha, 2006, Combined Mechanics-materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy, CIRP Ann. Manuf. Technol., Vol. 55, No. 1, pp. 233-236.   DOI
13 Gouthama, K. A. Padmanabhan, 2003, Transmission Electron Microscopic Evidence for Cavity Nucleation during Superplastic Flow, Scr. Mater., Vol. 49, No. 8, pp. 761-766.   DOI
14 D. L. Yin, K. F. Zhang, G. F. Wang, 2005, Superplasticity and Cavitation in AZ31 Mg Alloy at Elevated Temperatures, Mater. Lett., Vol. 59, No. 14-15, pp. 1714-1718.   DOI
15 K. C. Chan, K. K. Chow, 2002, The Stress State Dependence of Cavitation in Commercial Superplastic Al5083 Alloy, Mater. Lett., Vol. 56, No. 1-2, pp. 38-42.   DOI
16 B. L. Mordike, T. Ebert, 2001, Magnesium Properties-applications-potential, Mater. Sci. Eng. A, Vol. 302,No. 1 pp. 37-45.   DOI