Browse > Article
http://dx.doi.org/10.5228/KSTP.2010.19.7.423

Ultrafine Grained Bulk Al Matrix Carbon Nanotube Composites Processed by High Pressure Torsion  

Joo,, S.H. (포항공과대학교 신소재공학과)
Kim, H.S. (포항공과대학교 신소재공학과)
Publication Information
Transactions of Materials Processing / v.19, no.7, 2010 , pp. 423-428 More about this Journal
Abstract
Carbon nanotubes(CNTs) are expected to be ideal reinforcements of metal matrix composite materials used in aircraft and sports industries due to their high strength and low density. In this study, a high pressure torsion(HPT) process at an elevated temperature(473K) was employed to achieve both powder consolidation and grain refinement of aluminummatrix nanocomposites reinforced by 5vol% CNTs. CNT/Al nanocomposite powders were fabricated using a novel molecular-level mixing process to enhance the interface bonding between the CNTs and metal matrix before the HPT process. The HPT processed disks were composed of mostly equilibrium grain boundaries. The CNT-reinforced ultrafine grained microstructural features resulted in high strength and good ductility.
Keywords
High Pressure Torsion; Carbon Nanotubes; Equilibrium Boundaries; Tensile Behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Quang, Y. G. Jeong, S. C. Yoon, S. H. Hong, H. S. Kim, 2007, Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, J. Mater. Proc. Tech., Vol. 187, pp. 318-320.   DOI
2 K. T. Kim, S. I. Cha, T. Gemming, J. Eckert, S. H. Hong, 2008, The role of interfacial oxygen atoms in the enhanced mechanical properties of carbonnanotube-reinforced metal matrix nanocomposites, Vol. 4, pp. 1936-1940.   DOI
3 H. S. Kim, 2001, Finite element analysis of equal channel angular pressing using a round corner die, Mater. Sci. Eng. A, Vol. 315, pp. 122-128.   DOI   ScienceOn
4 B. S. Moon, H. S. Kim, S. I. Hong, 2002, Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing, Scripta Mater., Vol. 46, pp. 131-136.   DOI
5 Y. Harai, Y. Ito, Z. Horita, 2008, High-pressure torsion using ring specimens, Scripta Mater., Vol. 58, pp. 469-472.   DOI
6 Y. Y. Wang, P. L. Sun, P. W. Kao, C. P. Chang, 2004, Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion, Scripta Mater., Vol. 50, pp. 613-617.   DOI
7 C. Y. Yu, P. L. Sun, P. W. Kao, C. P. Chang, 2004, Evolution of microstructure during annealing of a severely deformed aluminum, Mater. Sci. Eng. A, Vol. 366, pp. 310-317.   DOI
8 R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev, 1991, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, Vol. 137, pp. 35-40.   DOI
9 H. Gleiter, 1995, Nanostructured materials: state of the art and perspectives, Nanostruct. Mater., Vol. 6, pp. 3-14.   DOI
10 R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, 2000, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., Vol. 45, pp. 103-189.   DOI
11 H. S. Kim, D. N. Lee, 2004, Prediction of the forming limit of porous metals using the finite element method, Mater. Trans., Vol. 45, pp. 1829-1832.   DOI
12 J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig, I. E. Anderson, 2003, Consolidation of amorphous copper based powder by equal channel angular extrusion, J. Non-Cryst. Solids, Vol. 317, pp. 144-151.   DOI
13 S. C. Yoon, H. S. Kim, 2006, Equal channel angular pressing of metallic powders for nanostructured materials, Mater. Sci. Forum., Vol. 504, pp. 221-226.   DOI
14 T. Tokunaga, K. Kaneko, Z. Horita, 2008, Production of aluminum-matrix carbon nanotube composite using high pressure torsion, Mater. Sci. Eng. A, Vol. 490, pp. 300-304.   DOI
15 V. N. Popov, 2004, Carbon nanotubes: Properties and application, Mater. Sci. Eng. R, Vol. 43, pp. 61-102.   DOI
16 T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, 1998, Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., Vol. 13, pp. 2445-2449.   DOI
17 S. I. Cha, S. N. Arshad, C. B. Mo, S. H. Hong, 2005, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mat., Vol. 17, pp. 1377-1381.   DOI
18 Y. J. Jeong, S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, S. H. Hong, 2007, Synergistic strengthening effect of ultrafine-grained metals reinforced with carbon nanotubes, Small, Vol. 3, pp. 840-844.   DOI
19 H. S. Kim, Y. Estrin, 2001, Ductility of ultrafine grained copper, Appl. Phys. Lett., Vol. 79, pp. 4115-4117.   DOI
20 R. Z. Valiev, I. V. Alexandrov, 2002, Development of severe plastic deformation techniques for the fabrication of bulk nanostructured materials, Ann. Chim. Sci. Mat., Vol. 27, pp. 3-14.