Browse > Article
http://dx.doi.org/10.5228/KSTP.2010.19.7.393

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model  

Lou, Y. (KAIST 기계항공시스템학부)
Kim, S.B. (KAIST 기계항공시스템학부)
Huh, H. (KAIST 기계항공시스템학부)
Publication Information
Transactions of Materials Processing / v.19, no.7, 2010 , pp. 393-398 More about this Journal
Abstract
This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.
Keywords
Forming Limit Diagram; Normal Anisotropy; Strain Rate; Sheet Metal Forming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. S. Levy, 1996, A comparison of empirical forming limit curves for low carbon steel with theoretical forming limit curves of Ramaekers and Bongaerts, IDDRG WG3, Ungarn, pp. 13-14.
2 A. Parmar, P. B. Mellor, 1978, Prediction of limit strains in sheet metal using a more general yield criterion, Int. J. Mech. Sci. Vol. 20, pp. 385-391.   DOI
3 A. Graf, W. F. Hosford, 1990, Calculations of forming limit diagrams, Metall. Mater. Trans. A, Vol. 21, pp. 87-94.   DOI
4 D. Banabic, E. Dannenmann, 2001, Prediction of the influence of yield locus on the limit strains in sheet metals, J. Mater. Process. Technol., Vol. 109, pp. 9-12.   DOI
5 W. F. Hosford, 1979, On the yield loci of anisotropic cubic metals, 7th North Am. Metalworking Conf., SME, Dearborn, MI, pp. 191-197.
6 R. Logan, W. F. Hosford, 1980, Upper-bound anisotropic yield locus calculations assuming <111> pencil glide, Int. J. Mech. Sci., Vol. 22, pp. 419-430.   DOI
7 H. W. Swift, 1952, Plastic instability under plane stress, J. Mech. Phys. Solids, Vol. 1, pp. 1-18.   DOI
8 S. P. Keeler, W. A. Backhofen, 1964, Plastic instability and fracture in sheet stretched over rigid punches, ASM Trans. on Quarterly, Vol. 56, pp. 25-48.
9 G. M. Goodwin, 1968, Application of strain analysis to sheet metal forming problems in the press shop, In: SAE Tech. Paper, No. 680093.
10 R. Hill, 1952, On discontinuous plastic states, with special reference to localized necking in thin sheets, J. Mech. Phys. Solids, Vol. 1, pp. 19-30.   DOI   ScienceOn
11 S. Storen, J. R. Rice, 1975, Localized necking in the sheets, J. Mech. Phys. Solids, Vol. 23, pp. 421-441.   DOI
12 J. D. Bressan, J. A. Williams, 1983, The use of a shear instability criterion to predict local necking in sheet metal deformation, Int. J. Mech. Sci., Vol. 25, pp. 155-168.   DOI
13 G. Jun, 1990, An extension of shear instability model on localized necking, ICTP, pp. 1293-1298.
14 Z. Marciniak, K. Kuczynski, 1967, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., Vol. 9, pp. 609-620.   DOI
15 K. S. Raghavan, R. C. Van Kuren, H. Darlington, 1992, Recent progress in the development of forming limit curves for automotive sheet steels, SAE920437.
16 S. P. Keeler, W. G. Brazier, 1975, Relationship between laboratory material characterization and press shop formability, Microalloying 75, New York, pp. 517-530.