Browse > Article
http://dx.doi.org/10.5228/KSPP.2010.19.1.005

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control  

Park, C.H. (포항공과대학교 신소재공학과)
Lee, C.S. (포항공과대학교 신소재공학과)
Publication Information
Transactions of Materials Processing / v.19, no.1, 2010 , pp. 5-10 More about this Journal
Abstract
The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.
Keywords
Titanium; Superplasticity; Artificial Neural Network; Severe Plastic Deformation; Dynamic Globularization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. Cope, D. R. Evetts, N. Ridley, 1986, Superplastic deformation characteristics of two microduplex titanium alloys, J. Mater. Sci., Vol. 21, pp. 4003-4008.   DOI
2 J. S. Kim, Y. W. Chang, C. S. Lee, 1998, Quantitative analysis on boundary sliding and its accommodation mode during superplastic deformation of two-phase Ti-6Al-4V alloy, Metall. Mater. Trans., Vol. 29A, pp. 217-226.
3 N. S. Reddy, C. S. Lee, J. H. Kim, S. L. Semiatin, 2006, Determination of the beta-approach curve and beta-transus temperature for titanium alloys using sensitivity analysis of a trained neural network, Mater. Sci. Eng. A, Vol. A434, pp. 218-226.
4 Y. G. Ko, C. S. Lee, D. H. Shin, S. L. Semiatin, 2006, Low-temperature superplasticity of ultrafine- grained Ti-6Al-4V processed by equal-channel angular pressing, Metall. Mater. Trans., Vol. 37A, pp. 381-391.
5 C. H. Park, Y. G. Ko, J.-W. Park, C. S. Lee, 2008, Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy, Mater. Sci. Eng. A., Vol. A 496, pp. 150-158.
6 M. Peters, G. Lutjering, G. Ziegler, 1983, Control of microstructures of (alpha plus beta)-titanium alloys, Z. Metall., Vol. 74, pp. 274-282.
7 T. K. Ha, Y. W. Chang, 1998, An internal variable theory of structural superplasticity, Acta Mater., Vol. 46, pp. 2741-2749.   DOI
8 C. H. Park, B. Lee, C. S. Lee, 2009, Proc. 23rd Conf. on Adv. Struc. Mater. (eds. Y.-S. Kim, B.-S. Lee), Korean Inst. Metals & Mater., Daejeon, Korea, p. 8.
9 I. M. Lifshitz, V. V. Slyozov, 1961, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Vol. 19 pp. 35-50.   DOI   ScienceOn
10 G. A. Sargent, A. P. Zane, P. N. Fagin, A. K. Ghosh, S. L. Semiatin, 2008, Low-temperature coarsening and plastic flow behavior of an alpha/beta titanium billet material with an ultrafine microstructure, Metall. Mater. Trans., Vol. 39A, pp. 2949-2964.
11 S. L. Semiatin, T. M. Lehner, J. D. Miller, R. D. Doherty, D. U. Furrer, 2007 Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure, Metall. Mater. Trans., Vol. 38A, pp. 910-921.
12 S. L. Semiatin, T. M. Brown, T. A. Goff, P. N. Fagin, D. R. Barker, R. E. Turner, J. M. Murry, J. D. Miller, F. Zhang, 2004, Diffusion coefficients for modeling the heat treatment of Ti-6Al-4V, Metall. Mater. Trans., Vol. 35A, pp. 3015-3018.
13 S. L. Semiatin, B. C. Kirby, G. A. Salishchev, 2004, Coarsening behavior of an alpha-beta titanium alloy, Metall. Mater. Trans., Vol. 35A, pp. 2809-2819.