Browse > Article
http://dx.doi.org/10.5228/KSPP.2006.15.5.360

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing  

Yoon, Seung-Chae (충남대학교 나노공학부)
Jeong, Young-Gi (한국생산기술연구원)
Kim, Hyoung-Seop (충남대학교 나노공학부)
Publication Information
Transactions of Materials Processing / v.15, no.5, 2006 , pp. 360-365 More about this Journal
Abstract
Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.
Keywords
Carbon Nanotubes; Metal Matrix Composite; Nanocomposites; Powder Consolidation; Equal Channel Angular Pressing; Mechanical Properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. M. German, Sintering Theory and Practice, John Wiley & Sons, Canada (1996) p. 544
2 V. M. Segal, K. T. Hartwig, R. E. Goforth, 1997, In situ composites processed by simple shear. Mater. Sci. Eng. A, Vol. 224, pp. 107-115   DOI   ScienceOn
3 K. Mukhopadhyay, C. D. Dwivedi, G. N. Mathur, 2002, Conversion of carbon nanotubes to carbon nanofibers by soniccation, Carbon, Vol. 40, pp. 1373-1376   DOI   ScienceOn
4 T. Kuzumaki, S. Kitakata, K. Enomoto, T. Yasuhara, N. Ohtake, T. Mitsuda, 2004, Dynamic observation of the bending behavior of carbon nanotubes by nanoprobe manipulation in TEM, Carbon, Vol. 11, pp. 2343-2345
5 E. Dujardin, T. W. Ebbesen, H. Hiur and K. Tanigaki, 1994, Capillarity and wetting of carbon nanotubes, Science. Vol. 265, pp. 1850-1850   DOI   ScienceOn
6 J. S. Song, S. I. Hong, 2001, Mechanical and electrical properties of Cu-Cr base microcomposite plates fabricated by the deformation processing, J. Kor. Inst. Met. Mater., Vol. 39, pp. 778-786
7 S. Ohsaki, K. Yamazaki, K. Hono, 2003, Alloying of immiscible phase in wire-drawn Cu-Ag filamentary composites, Scripta Mater., Vol. 48, pp. 1596-1574
8 S. R. Agnew, J. R. Weertman, 1998, The influence of texture on the elastic properties of ultrafine-grain copper, Mater. Sci. Eng. A, Vol. 242, pp. 174-180   DOI   ScienceOn
9 G. Wang, S. D. Wu, L. Zuo, C. Esling, Z. G. Wang, G. Y. Li, 2003, Microstructure texture grain boundaries in recrystallization regions in pure Cu ECAE sample, Mater. Sci. Eng. A, Vol. 346, pp. 83-90   DOI   ScienceOn
10 S. R. Dong, J. P. Tu, X. B. Zhang, 2001, An investigation of the sliding wear behavior of Cu-matrix composites reinforced by carbon nanotubes, Mater. Sci. Eng. A, Vol. 313, pp. 83-87   DOI   ScienceOn
11 D. Y. Ying, D. L. Zhang, 2000, Processing of Cu-A1203 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, Vol. 286, pp. 152-156   DOI   ScienceOn
12 E. Dujardin, T. W. Ebbesen, A. Krishnan, M. M. J. Treacy, 1998, Wetting of single shell carbon nanotubes, Adv. Mater., Vol. 10, pp. 1472-1475   DOI
13 S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, S. H. Hong, 2005, Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scripta Mater., Vol. 53, pp. 793-797   DOI   ScienceOn
14 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, 1985, Buckminsterfullerene, Nature, Vol. 318, pp. 162-163   DOI
15 G. D. Zhan, J. C. Kuntz, A. K. Mukherjee, P. Zhu, K. Koumoto, 2006, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scripta Mater., Vol. 54, pp. 77-82   DOI   ScienceOn
16 H. Zhan, C. Zheng, W. Chen, M. Wang, 2005, Characterization and nonlinear optical property of a multi-walled carbon nanotube/silica xerogel composite, Chem. Phys. Lett., Vol. 411, pp. 373- 377   DOI   ScienceOn
17 S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong, H. S. Kim, 2004, Consolidation of rapidly solidified Al-20 wt% Si alloy powders using equal channel angular pressing, J. Kor. Powder Metall. Inst., Vol. 11, pp. 233-241   DOI   ScienceOn
18 S. Arai, M. Endo, 2003 Carbon nanofiber-copper composite powder prepared by electrodeposition, Electrochem. Commun., Vol. 5, pp. 797-799   DOI   ScienceOn
19 S. S. Wang, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, 1998, Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology, Nature, Vol. 394, pp. 52-55   DOI   ScienceOn
20 Y. S. Kim, M. J. Verrilli, 1995, Characterization of thermomechanical fatique failure behavior of tungsten copper matrix composiste, J. Kor. Inst. Met. Mater., Vol. 33, pp. 525-530
21 S. Iijima, 1991, Helical microtubules of graphitic carbon, Nature, Vol. 354, pp. 56-58   DOI
22 K. T. Lau, D. Hui, 2002, The revolutionary creation of new advanced materials-carbon nanotube composites, Composites B, Vol. 33, pp. 263-277   DOI   ScienceOn
23 D. Raabe, U. Hangen, 1996, Correlation of microstructure and type superconductivity of a heavily cold rolled Cu-20 mass % Nb in situ composite, Acta Mater., Vol. 44, pp. 953-961   DOI   ScienceOn