Browse > Article
http://dx.doi.org/10.5228/KSPP.2005.14.8.681

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy  

Kim Jeoung Han (한국기계연구원)
Yeom Jong Taek (한국기계연구원, 신기능재료연구부/소재성형센터)
Park Nho Kwang (한국기계연구원, 신기능재료연구부/소재성형센터)
Lee Chong Soo (포항공과대학교, 신소재공학과)
Publication Information
Transactions of Materials Processing / v.14, no.8, 2005 , pp. 681-688 More about this Journal
Abstract
The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.
Keywords
Ti-6Al-4V; Internal Variable Theory; Deformation Mechanisms; Phase Volume Fraction; Boundary Strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. R. Bieler, S. L. Serniatin, 2002, Inter. J. of Plasticity 18, 1165   DOI   ScienceOn
2 S. L. Semiatin, T. R. Bieler, 2001, Acta Mater. 49, 3565   DOI   ScienceOn
3 K. I. Suzuki, S. Watakabe, 2003, Met. Mater.-Int. Vol. 9, 359   DOI
4 E. B. Shell, S.L. Semiatin, 1999, Metall. Mater. Trans. A 30A, 3219
5 J. S. Kim, Y. W. Chang, C. S. Lee, 1998, Metall. Trans. A 29A, 217
6 T. K. Ha, Y. W. Chang, 1998, Acta Mater. 46, 2741   DOI   ScienceOn
7 W. Bang, T. K. Ha, Y. W. Chang, 2000, Met. Mater.-Int. 3, 203
8 J. H. Kim, T. K. Ha, Y. W. Chang, C. S. Lee, 2003, Metall. Mater. Trans. A 34A, 2165
9 J. H. Kim, D. H. Shin, S. L. Semiatin, C. S. Lee, 2003, Mater. Sci. Eng. A344, 146
10 A. A. Salem, S. R. Kalidindi, R. D. Doherty, 2002, Scripta Mater., 46, 419   DOI   ScienceOn
11 S. L. Semiatin, T. R. Bieler, 2001, The second international conference on Light Material for Transportation systems held at Pusan, Korea, May 6-10, 2001, Edited by Nack J. Kim, C.S. Lee, and D. Eylon, p. 79
12 H. J. Frost, M. F. Ashby, 1982, Deformation Mechanism Maps-The Plasticity and Creep of Metals and Ceramics, Pergamon press, pp. 6-16
13 J. H. Kim, S. L. Semiatin, C. S. Lee, 2003, Acta Mater. 51, 5613   DOI   ScienceOn
14 E. W. Hart, 1984, Trans. ASME 106, 322   DOI
15 S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, D.R. Barker, 2003, Metall. Mater. Trans. A, 34, 2377   DOI   ScienceOn