Browse > Article
http://dx.doi.org/10.5228/KSPP.2005.14.5.423

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die  

Jun B. Y. (경상대학교 수송기계부품기술혁신센터)
Kang S. M. (㈜삼광공업)
Park J.M. (큐빅테크)
Lee M. C. (경상대학교 기계공학과 대학원)
Park R. H. (경상대학교 기계공학과 대학원)
Joun M. S. (경상대학교 기계항공공학부)
Publication Information
Transactions of Materials Processing / v.14, no.5, 2005 , pp. 423-431 More about this Journal
Abstract
In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.
Keywords
Springback; Die Deformation; Finite Element Analysis; Precision Forging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Engel, M. Hansel, 1990, FEM-Simulation of Fatigue Crack Growth in Cold Forging Dies, Adv. Tech. Plast., Vol. 1, pp. 355-360
2 Z. Xing-hua, 1990, Finite Element Analysis of Container and Accuracy Control of Extrusion Products, Adv. Tech. Plast., Vol. 1, pp. 343-348
3 K. Lange, A. Hettig, M. Knoerr, 1992, Increasing Tool Life in Cold Forging through Advanced Design and Tool Manufacturing Techniques, J. Mat. Proc. Tech., Vol.35, pp. 495-513   DOI   ScienceOn
4 K. F. Hoffmann, K. Lange, 1989, Computation of the Elastic Expansion and Stresses in Cold Extrusion Dies with Non- Axisymmetric Inner Shape, Trans. NAMRI of SME, Vol., pp. 71-78
5 S. Takahashi, C. A. Brebbia, 1990, Forging Die Stress Analysis Using Boundary Element Method, Adv. Tech. Plast., Vol. 1, pp. 203-210
6 M. Fu, B. Shang, 1995, Stress Analysis of the Precision Forging Die for a Bevel Gear and its Optimal Design Using the Boundary-Element Method, J. Mat. Proc. Tech., Vol. 53, pp. 511-520   DOI   ScienceOn
7 M. S. Joun, M. C. Lee, J. M. Park, 2002, Finite element analysis of prestressed die set in cold forging, Int. J. Math. Tools Manuf., vol. 42, pp. 1214-1222
8 Y. Ochial, R. Wadabayashi, 1987, Application of Boundary Element Method to Cold Forging Die Design, Adv. Tech. Plast., Vol. 1, pp. 37-42
9 S. M. Hwang, M. S. Joun, Y. H. Kang, 1993, Finite Element Analysis of Temperatures, Metal Flow and Roll Pressure in Hot Strip Rolling, ASME Trans. J. Eng. for Industry, Vol. 115, pp. 290-298
10 전병윤, 2000, 금형의 변형과 소재의 탄성회복을 고려한 정밀 냉간단조 공정설계 기술에 관한 연구, 석사학위 논문, 경상대학교
11 Y. S. Lee, J. H. Lee, Y. N. Kwon, T. Ishikawa, 2004, Modeling approach to estimate the elastic characteristics of workpiece and shrink-fitted die for cold forging, J. Mater. Process. Technol., vol. 147, pp. 102-110   DOI   ScienceOn
12 K. Osakada, J. Nakano, K. Mori, 1982, Finite Element Method for Rigid-Plastic Analysis of Metal Forming-Formulation for Finite-Deformation, Int. J. Mech. Sci., Vol. 24, pp. 459-469   DOI   ScienceOn
13 S. I. Oh, J. P. Tang, A. Badawy, 1984, Finite Element Mesh Rezoning and its Applications to Metal Forming Analysis, Advd. Tech. Plasticity, Vol. 2, pp. 1051-1058
14 C. H. Lee, S. Kobayashi, 1973, New Solution to Rigid Plastic Deformation Using a Matrix Method, Trans. ASME, J. of Eng. for Ind., Vol. 95, pp. 865-873   DOI
15 O. C. Zienkiewicz, P. N. Godbole, 1975, A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformation, J. of Strain Analysis, Vol. 10, No. 3
16 S. I. Oh, N. Rebelo, S. Kobayashi, 1978, Finite Element Formulation for the Analysis of Plastic Deformation of Rate-Sensitive Materials in Metal Forming, IUTAM Symposium, Tutzing/Germany, pp. 273-291
17 C. C. Chen, S. Kobayashi, 1978, Rigid-Plastic Finite Element Analysis of Ring Compression, Application of numerical methods to forming processes, ASME, AMD, Vol. 28, pp. 163-174
18 S. I. Oh, 1982, Finite Element Analysis of Metal Forming Processes with Arbitrary Shaped Dies, Int. J. Mech. Sci., Vol. 24, pp. 479-493   DOI   ScienceOn
19 전만수, 김형일, 2000, 고체역학에서 유한요소법까지, 피어슨에듀케이션코리아
20 S. M. Hwang, M. S. Joun, J. S. Park, 1990, A Penalty Rigid-Plastic Finite Element Method for the Determination of Stress Distributions at the Tool-Workpiece Interface in Metal Forming, Trans. of NAMRI of SME, Vol. XVIII, pp. 13-19