Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.2.07

Wettability of graphene and its control  

Son, Jangyup (Functional Composite Materials Research Center, Korea Institute of Science and Technology)
Publication Information
Ceramist / v.23, no.2, 2020 , pp. 166-177 More about this Journal
Abstract
The wettability is one of the most fundamental properties of a material surface. Especially, graphene, two-dimensional (2D) surface material in which all the carbon atoms are exposed to the environment, is the best choice of template to study about the surface wettability. However, most studies have focused on the mechanical and electrical properties of graphene, not the surface wettability. This review article covers the wettability of graphene and provides recent research regarding the engineering of the surface wettability. This paper would be helpful for researchers working in this field and provides perspective for future carbon-liquid interacting applications.
Keywords
graphene; wettability; water-carbon interaction; surface topography; chemical functionalization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Xiong, J. Z. Liu, Z.-L. Zhang and Q.-S. Zheng, "Control of Surface Wettability via Strain Engineering," Acta Mechanica Sinica , 29 543-49 (2013).   DOI
2 S. Zhang, J. Huang, Z. Chen and Y. Lai, "Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications," Small, 13 1602992 (2017).   DOI
3 L. Makkonen, "Young's equation revisited," J. Phys.: Condens. Matter, 28 135001 (2016).   DOI
4 R. N. Wenzel, "Resistance of Solid Surfaces to Wetting by Water," Ind. Eng. Chem., 28 988-94 (1936).   DOI
5 A. B. D. Cassie and S. Baxter, "Wettability of Porous Surfaces," Trans. Faraday Soc., 40 546-51 (1944).   DOI
6 J. Dong, Z. Yoo, T. Yang, L. Jiang and C. Shen, "Control of Superhydrophilic and Superhydrophobic Graphene Interface," Sci. Rep., 3 1733 (2013).   DOI
7 E. Singh, Z. Chen, F. Houshmand, W. Ren, Y. Peles, H.-M. Cheng and N. Koratkar, "Superhydrophobic Graphene Foams," Small, 9 75-80 (2013).   DOI
8 J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler and X. Zhao, "Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene," Nat. Mater., 12 321-25 (2013).   DOI
9 Y. J. Shin, Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. Shen, C. S. Bhatia and H. Yang, "Surface-Energy Engineering of Graphene," Langmuir, 26 3798-802 (2010).   DOI
10 C. J. Russo and L. A. Passmore, "Controlling Protein Adsorption on Graphene for Cryo-EM using Low-Energy Hydrogen Plasmas," Nat. Methods, 11 649-652 (2014).   DOI
11 J. Son, J.-Y Lee, N. Han, J. Cha, J. Choi, J. Kwon, S. W. Nam, K.-H. Yoo, G.-H. Lee and J. Hong, "Tunable Wettability of Graphene through Nondestructive Hydrogenation and Wettability-Based Patterning for Bioapplications," Nano Lett., (2020).
12 C. Wang, B. Zhou, Y. Tu, M. Duan, P. Xiu, J. Li and H. Fang, "Critical Dipole Length for the Wetting Transition Due to Collective Waterdipoles Interactions," Sci. Rep., 2 358 (2012).   DOI
13 Y. Li and Z. Chen, "Patterned Partially Hydrogenated Graphene ($C_4H$) and Its One-Dimensional Analogues: A Computational Study," J. Phys. Chem. C, 116 4526-4534 (2012).   DOI
14 H. Sahin, M. Topsakal and S. Ciraci, "Structures of Fluorinated Graphene and Their Signatures," Phys. Rev. B, 83 115432 (2011).   DOI
15 W. Feng, P. Long, Y. Feng and Y. Li, "Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications," Adv. Sci., 3 1500413 (2016).   DOI
16 V. Mazanek, O. Jankovsky, J. Luxa, D. Sedmidubsky, Z. Janousek, F. Sembera, M. Mikulics and Z. Sofer, "Tuning of Fuorine Content in Graphene: Towards Large-Scale Production of Stoichiometric Fuorographene," Nanoscale, 7 13646 (2015).   DOI
17 T. Lim and S. Ju, "Control of Graphene Surface Wettability by Using $CF_4$ Plasma," Surf. Coat. Tech., 328 89-93 (2017).   DOI
18 J. Li and Z. Guo, "Spontaneous Directional Transportations of Water Droplets on Surfaces Driven by Gradient Structures," Nanoscale, 10 13814-31 (2018).   DOI
19 J. Feng and Z. Guo, "Wettability of Graphene: from Influencing Factors and Reversible Conversion to Potential Applications," Nanoscale Horiz., 4 ,339-64 (2019).   DOI
20 L. Zhong, H. Zhu, Y. Wu and Z. Guo, "Understanding How Surface Chemistry and Topography Enhance Fog Harvesting based on the Superwetting Surface with Patterned Hemispherical Bulges," J. Colloid Interface Sci., 525 234-42 (2018).   DOI
21 X. Jing and Z. Guo, "Biomimetic Super Durable and Stable Surfaces with Superhydrophobicity, " J. Mater. Chem. A, 6 16731-68 (2018).   DOI
22 C. Huang and Z. Guo, "The Wettability of Gas Bubbles: from Macro Behavior to Nano Structures to Applications," Nanoscale, 10 19659-72 (2018).   DOI
23 B. B. Rich and B. Pokroy, "A Study on the Wetting Properties of Broccoli Leaf Surfaces and Their Time Dependent Self-Healing after Mechanical Damage," Soft Matter, 14 7782-92 (2018).   DOI
24 S. S. Latthe, P. Sudhagar, A. Devadoss, A. M. Kumar, S. Liu, C. Terashima, K. Nakata and A. Fujishima, "A Mechanically Bendable Superhydrophobic Steel Surface with Self-Cleaning and Corrosion-Resistant Properties," J. Mater. Chem. A, 3 14263-71 (2015).   DOI
25 T. Niu, J. Zhang and W. Chen, "Surface Engineering of Two-Dimensional Materials," ChemNanoMat, 5 6-23 (2019).   DOI
26 A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Catelletto and S. Mikhalovsky, "Outlook for Graphene-Based Desalination Membranes," npj Clean Water, 5 (2018).
27 M. F. El-Kady, Y. Shao and R. B. Kaner, "Graphene for Batteries, Supercapacitors and Beyond," Nat. Rev. Mater., 1 16033 (2016).   DOI
28 R. Raj, S. C. Maroo and E. N. Wang, "Wettability of Graphene," Nano Lett., 13 1509-15 (2013).   DOI
29 J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan and Nikhil Koratkar, "Wetting Transparency of Graphene, " Nat. Mater., 11 217-22 (2012).   DOI
30 P. Snapp, J. M. Kim, C. Cho, J. Leem, M. F. Haque and S. W. Nam, "Interaction of 2D Materials with Liquids: Wettability, Electrochemical Properties, Friction, and Emerging Directions," NPG Asia Materials, 12 22 (2020).   DOI
31 Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li and H. Liu, "Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite," Nat. Mater., 12 925-31 (2013).   DOI
32 F. Taherian, V. Marcon, N. F. A. van der Vegt and F. Leroy, "What Is the Contact Angle of Water on Graphene?," Langmuir, 29 1457-65 (2013).   DOI
33 G. Scocchi, D. Sergi, C. D'Angelo and A. Ortona, "Wetting and Contact-Line Effects for Spherical and Cylindrical Droplets on Graphene Layers: A Comparative Molecular-Dynamics Investigation," Phys. Rev. E, 84 061602 (2011).
34 J. E. Andrew, S. Sinha, P. W. Chung and S. Das, "Wetting Dynamics of a Water Nanodrop on Graphene," Phys. Chem. Chem. Phys., 18 23482-93 (2016).   DOI
35 G. Yiapanis, A. J. Makarucha, J. S. Baldauf and M. T. Downton, "Simulations of Graphitic Nanoparticles at Air-Water Interfaces," Nanoscale, 8 19620-28 (2016).   DOI
36 D. G. Papageorgious, I. A. Kinloch and R. J. Young, "Mechanical Properties of Graphene and Graphene-Based Nanocomposites," Prog. Mater. Sci., 90 75-127 (2017).   DOI
37 D. Parobek and H. Liu, "Wettability of Graphene," 2D Mater., 2 032001 (2015).   DOI
38 L. A. Belyaeva and G. F. Schneider, "Wettability of Graphene," Surf. Sci. Rep., 75 100482 (2020).   DOI