Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.1.06

A Brief Review of Enhancing Incipient Piezostrains: Approach by Ceramic/Ceramic Composites  

Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan)
Duong, Trang An (School of Materials Science and Engineering, University of Ulsan)
Ahn, Chang Won (Department of Physics & EHSRC, University of Ulsan)
Jo, Wook (Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Ceramist / v.23, no.1, 2020 , pp. 89-100 More about this Journal
Abstract
Abnormally large electromechanical strain properties have been reported in bismuth-based piezoelectric ceramics, which cast a promise for replacing the market-dominating PZT-based piezoelectric ceramics in actuator applications. In spite of these large strains in bismuth-based piezoelectric ceramics, there still remains a critical issue for its safe transfer to practical applications, representatively, a relatively high operating field required to obtain the large strain properties. To overcome the challenge, much attention has been paid to so-called 0-3(or 3-0) type ceramic/ceramic composite approach to better tailoring the strain properties of bismuth-based piezoelectric ceramics. The approach turns out to be highly effective, leading to a drastic decrease in the operating electric field for these materials. Besides, both extensive and intensive search for the related mechanism revealed that the reduction in the operating electric field is largely due to the contribution from polarization coupling or strain coupling model between two different ceramics. This article reviews the status of the art in the development of novel ceramic/ceramic composites to make large incipient piezostrains in bismuth-based lead-free piezoelectric ceramics practical.
Keywords
lead-free piezocermics; electromechanical strain; composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Jo, "Lead-Free Incipient Piezoceramics for Actuator Applications," Physics and High Technology, 22, 8-13 (2013).   DOI
2 T. Takenaka, K. I. Maruyama and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl.. Phys., 30, 2236 (1991).   DOI
3 A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, "Dielectric and Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})TiO_3-(Bi_{0.5}K_{0.5})TiO_3$ Systems," Jpn. J. Appl. Phys., Part 1, 38, 5564 (1999).   DOI
4 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432, 84 (2004).   DOI
5 M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. -H. Kim, W. -J. Kim, D. Do, I. -K. Jeong," High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27, 6976-82 (2015).   DOI
6 W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103, 257602 (2009).   DOI
7 S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91, 112906 (2007).   DOI
8 J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92, 1153-1177 (2009).   DOI
9 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics For Actuator Applications - Status and Perspective," J. Electroceram., 29, 71 (2012).   DOI
10 H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, J. S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-free Ceramics," J. Appl. Phys., 113, 154102 (2013).   DOI
11 M. Fazeli, J. P. Florez, R. A. Simao (April 2019). "Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification," Composites Part B, 163, 207-216 (2019).   DOI
12 김현이, 이동한, "세라믹 복합재료," 세라미스트, 9, 125-31 (1994).
13 박상환, 김영욱, 이준근, "세라믹 기지 복합재료 제조 기술," 세라미스트, 5, 145-55 (1990).
14 T. R. Shrout, W. A. Schulze and J. V. Biggers, "Electromechanical Behavior of Antiferroelectric-Ferroelectric Multilayer PZT Based Composites," Ferroelectrics, 29, 129-34 (1980).   DOI
15 H. Komiya, Y. Naito, T. Takenaka, and K. Sakata, "Piezoelectric and Pyroelectric Composite Ceramics of the Multilayer Type by Tape Casting," Jpn. J. Appl. Phys. Part 1, 28, 114-6 (1989).
16 D. E. Dausch, E. Furman, F. Wang and G. H. Haertling, "PLZT-based Multilayer Composite Thin Films, Part I: Experimental Investigation of Composite Film Structures," Ferroelectrics, 177, 221-36 (1996).   DOI
17 D. E. Dausch, E. Furman, F. Wang, G. H. Haertling, "PLZT-based Multilayer Composite Thin Films, Part II: Modeling of the Dielectric and Hysteresis Properties," Ferroelectrics, 177, 237-53 (1996).   DOI
18 O. Furukawa, M. Harata, M. Imai, Y. Yamashita and S. Mukaeda, "Low Firing and High Dielectric Constant X7R Ceramic Dielectric for Multilayer Capacitors based on Relaxor and Barium Titanate Composite," J. Mater. Sci., 26, 5838-42 (1991).   DOI
19 A. Yoneda, T. Takenaka and K. Sakata, "Composite Piezoelectric Ceramics of $(LiBi)_{1/2}$-Modifed PZT System," Jpn. J. Appl. Phys., Part 1, 28, 95-7 (1989).   DOI
20 V. O. Sherman, A. K. Tagantsev and N. Setter, "Model of a Low-Permittivity and High-Tunability Ferroelectric Based Composite," Appl. Phys. Lett., 90, 162901-3 (2007).   DOI
21 V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles and T. Price, "Ferroelectric-Dielectric Tunable Composites," J. Appl. Phys., 99, 074104-10 (2006)   DOI
22 D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99, 062906-3 (2011).   DOI
23 T. H. Dinh, J. K. Kang, H. T. K. Nguyen, T. A. Duong, J. S. Lee, "Giant Strain in Lead- Free Relaxor/Ferroelectric Piezocomposite Ceramics," J. Korean Phys. Soc., 68, 1439-44 (2016).   DOI
24 T. H. Dinh, C. H. Yoon, J. K. Kang, Y. H. Hong, J. S. Lee, "Enhanced Low-Field Strain in Bi-Based Lead-Free Ferroelectric-Relaxor Composites," Ferroelectrics, 487, 142-8 (2015).   DOI
25 M. Sheeraz, A. Khaliq, A. Ullah, H. S. Han, A. Khan. A. Ullah, I. W. Kim, T. H. Kim and C. W. Ahn, "Stress Driven High Electrostrain at Low Field in Incipient Piezoelectrics," J. Eur. Ceram. Soc., 39, 4688-96 (2019).   DOI
26 C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24, 356-62 (2014).   DOI
27 T. H. Dinh, V. D. N. Tran, T. T. Nguyen, Q. T. N. Hoang, H. S. Han, J. S. Lee, "The Reduced Reversible Phase Transition Field of Lead-Free Bi-Based Ceramic Composites by Adding Nonergodic Relaxor," Ceram. Int., 43, 17160-6 (2017).   DOI
28 C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. Hwang, W. Jo, K. Wang, J. F. Li, I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68, 1481-94 (2016).   DOI
29 A. Khaliq, M. Sheeraz, A. Ullah, H.J. Seog, C.W. Ahn, T.H. Kim, S. Cho, I.W. Kim, "Ferroelectric Seeds-Induced Phase Evolution and Large Electrostrain Under Reduced Poling Field in Bismuth-Based Composites," Ceram. Int., 44, 13278-13285 (2018).   DOI
30 H. Zhang, C. Groh, Q. Zhang, W. Jo, K.G. Webber and J. Rodel, "Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics," Adv. Electron. Mater., 1, 1500018 (2015).   DOI
31 T. H. Dinh, J. K. Kang, J. S. Lee, N. H. Khansur, J. Daniels, H. Y. Lee, F. Z. Yao, K. Wang, J. F. Li, H. S. Han, W. Jo, "Nanoscale Ferroelectric/Relaxor Composites: Origin of Large Strain in Lead-Free Bi-Based Incipient Piezoelectric Ceramics," J. Eur. Ceram. Soc., 36, 3401-3407 (2016).   DOI
32 A. Khaliq, M. Sheeraz, A. Ullah, J. S. Lee, C. W. Ahn, I. W. Kim, "Large Strain in $Bi_{0.5}(Na_{0.78}K_{0.22})0.5TiO_3-Bi(Mg_{0.5}Ti_{0.5})O_3$ Based Composite Ceramics Under Low Driving Field," Sens. Actuators A Phys., 258, 174-181 (2017).   DOI
33 J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, "Giant Electric Field-Induced Strain at Room Temperature in $LiNbO_3$-Doped $0.94(Bi_{0.5}Na_{0.5})TiO_3-0.06BaTiO_3$," J. Eur. Ceram. Soc., 37, 2365-2371 (2017).   DOI
34 M. Saleem, L. D. Hwan, I. S. Kim, M. S. Kim, A. Maqbool, U. Nisar, S. A. Pervez, U. Farooq, M. U. Farooq, H. M. W. Khalil, S. J. Jeong, "Revealing of Core Shell Effect on Frequency-Dependent Properties of Bi-Based Relaxor/Ferroelectric Ceramic Composites," Sci. Rep., 8, 14146 (2018).   DOI
35 J. H. Cho, J. S. Park, S. W. Kim, Y. H. Jeong, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, "Ferroelectric Properties and Core Shell Domain Structures of Fe-Modified $0.77Bi_{0.5}Na_{0.5}TiO_3-0.23SrTiO_3$ Ceramics," J. Eur. Ceram. Soc., 37, 3313-3318 (2017).   DOI
36 A. Ullah, M. Alam, A. Ullah, C. W. Ahn, J. S. Lee, S. Cho, I. W. Kim, "High Strain Response in Ternary $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-Bi(Mn_{0.5}Ti_{0.5})O_3$ Solid Solutions," RSC Adv., 6, 63915-63921 (2016).   DOI
37 Y. Zhu, Y. Zhang, B. Xie, P. Fan, M. A. Marwat, W. Ma, C. Wang, B. Yang, J. Xiao, H. Zhang, "Large Electric Field-Induced Strain in $AgNbO_3$-Modified $0.76Bi_{0.5}Na_{0.5}TiO_3-0.24SrTiO_3$ Lead-Free Piezoceramics," Ceram. Int., 44, 7851-7857 (2018).   DOI
38 Y. H. Hong, H. S. Han, G. H. Jeong, Y. S. Park, T. H. Dinh, C. W. Ahn, J. S. Lee, "High Electromechanical Strain Properties by the Existence of Nonergodicity in $LiNbO_3$-Modified $Bi_{1/2}Na_{1/2}TiO_3-SrTiO_3$ Relaxor Ceramics," Ceram. Int., 44, 21138-21144 (2018).   DOI
39 X. Liu, S. Xue, F. Li, J. Ma, J. Zhai, B. Shen, F. Wang, X. Zhao, H. Yan, "Giant Electrostrain Accompanying Structural Evolution in Lead-Free NBT-Based Piezoceramics," J. Mater. Chem. C, 6, 814-822 (2018).   DOI
40 T. R. Shrout, S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19, 111-124 (2007).
41 N. J. Donnelly, T. R. Shrout, C. A. Randall, "Addition of a Sr, K, Nb (SKN) Combination to PZT(53/47) for High Strain Applications" J. Am. Ceram. Soc., 90, 490-495 (2007).   DOI
42 B. Jaffe, W. R. Cook, and H. Jaffe, "Piezoelectric Ceramics," Academic Press, 1971.
43 K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997.
44 A. J. Bell and O. Deubzer. "Lead-Free Piezoelectrics-The Environmental and Regulatory Issues," MRS Bulletin, 43, 581-7 (2018)   DOI
45 Quoted from the invited talk by professor Takenaka at the ISAF, Santa Fe, USA (2008).
46 J. Rodel, J. F. Li, "Lead-Free Piezoceramics: Status and Perspectives," MRS Bulletin, 43, 576-80 (2018)   DOI