Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.1.07

4D printing with smart materials and structures  

Song, Hyeonseo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Kim, Jiyun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Ceramist / v.23, no.1, 2020 , pp. 27-37 More about this Journal
Abstract
Recently, 4D printing technology has received considerable attention in various industries and research fields including soft robotics, tissue engineering, electronics. In 4D printing process, 3D printed object transforms itself into programmed structure by the input of external energy. Thus, this process requires not only smart materials, capable of changing their properties or features in response to external stimuli such as electricity, temperature, light, etc., but also smart structures, multi-material 3D printing, simulation and so on. In this review, the concept, technical elements and potential of 4d printing are presented.
Keywords
4D printing; Smart materials; Programmable matter; Smart structure; 3D printing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Kim, H. Yuk, R. Zhao, S. A. Chester, X. Zhao, "Printing ferromagnetic domains for untethered fast-transforming soft materials", Nature, 588 [7709] 274-279 (2018).
2 A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, "Biomimetic 4D printing," Nat. Mater., 15 [4] 413-418 (2016).   DOI
3 G. Liu, Y. Zhao, G. Wu, J. Lu, "Origami and 4D Printing of Elastomer-derived Ceramic Structures," Sci. Adv., 4 [8] (2018).
4 J. L. Silverberg, J.-H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, "Origami structures with a critical transition to bistability arising from hidden degrees of freedom," Nat. Mater., 14 [4] 389-393 (2015).   DOI
5 N. C. Seeman,"Nucleic acid junctions and lattices," Journal of theoretical biology, 99 [2] 237-247, (1982).   DOI
6 P. W. K. Rothemund, "Folding DNA to create nanoscale shapes and patterns," Nature, 440 [7082] 297-302 (2006).   DOI
7 J. A. Faber, A. F. Arrieta, A. R. Studart, "Bioinspired spring origami," Science 359 [6382] 1386-1391 (2018).   DOI
8 E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. Wood, "Programmable matter by folding," Proc. Natl. Acad. Sci. U.S.A., 107 [28] 12441-12445 (2010).
9 L.Wilson, S.Pellegrino, Rolf Danner, "Origami sunshield concepts for space telescopes," 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 1594 (2013).
10 A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, M. Shtein, "Dynamic kirigami structures for integrated solar tracking," Nat. Commun., 6 8092 (2015).   DOI
11 M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, P. L. McEuen, "Graphene kirigami," Nature 524 [7564] 204-207 (2015).   DOI
12 A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, K. Bertold, "Kirigami skins make a simple soft actuator crawl,"Sci. Robot., 3 [15] eaar7555 (2018).   DOI
13 A. Rafsanjani, L. Jin, B. Deng, K. Bertoldi, "Propagation of pop ups in kirigami shells,"Proc. Natl. Acad. Sci. U.S.A., 116 [17] 8200 (2019).   DOI
14 T.H.Kwok, C.C.L. Wang, D. Deng, Y. Zhang, Y. Chen, "4D printing for freeform surfaces: design optimization of origami and kirigami structures," Trans. ASME, J. Mech. Des. 137 [11] (2015).
15 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84 [18] 4184 (2000).   DOI
16 K. Bertoldi, P.M. Reis, S. Willshaw and T. Mullin, "Negative Poisson's Ratio Behavior Induced by an Elastic Instability," Adv. Mater., 22 [3] 361-366 (2010).   DOI
17 S. Tibbits, "Skyler Tibbits: The Emergence of 4D Printing," TED, (2013)., Available: http://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.
18 C. Goldstein, J. D. Campbell and T. C. Mowry, "Programmable matter," Computer, 38 [6] 99-101, (2005).   DOI
19 M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, "Swarm robotics: a review from the swarm engineering perspective," Swarm Intell., 7 [1] 1-41 (2013).   DOI
20 A. Pamecha, I. Ebert-Uphoff and G. S. Chirikjian, "Useful metrics for modular robot motion planning," IEEE Transactions on Robotics and Automation, 13 [4] 531-545 (1997).   DOI
21 W. Kim, J. Byun, J. Kim, W. Choi, K. Jakobsen, J. Jakobsen, D. Lee, and K. Cho. "Bioinspired dual-morphing stretchable origami," Sci. Robot., 4 [36] eaay3493 (2019).   DOI
22 J.T.B. Overvelde, S. Shan and K. Bertoldi," Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape," Adv. Mater., 24 [17] 2337-2342 (2012).   DOI
23 H. Zhang, X. Guo, J. Wu, D. Fang, and Y. Zhang, "Soft mechanical metamaterials with unusual swelling behavior and tunable stressstrain curves," Sci. Adv., 4 [6] eaar8535 (2018).   DOI
24 K. Liu, J. Wu, G. H. Paulino, H. J. Qi, "Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers," Sci. Rep., 7 [1] 3511 (2017).   DOI
25 S. Ham, and Y.G. Lee., "A study on the automatic design of 4D printing to follow the target shape," Korea Journal of Computational Design and Engineering 21 [3] 306-312 (2016).   DOI
26 N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, "Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding," ACM SIGEVOlution 7 [1] 11-23 (2014).   DOI
27 "MIT Self Assembly Lab creates Shapeshifting Minimal Shoe," All3DP, last modified Nov 10, 2015, accessed Fab 28, 2020, www.all3dp.com/mit-self-assembly-lab-minimalshoe/
28 J.Rosenkrantz, J.L.-Rosenberg,"Dress/code democratising design through computation and digital fabrication, "Architectural Design, 87 [6] 48-57 (2017).   DOI
29 "Organovo Subsidiary Samsara Sciences Launches Commercial Operations, Will Be Dedicated Cell Provider for 3D Bioprinting Company," 3Dprint.com, last modified Jan 13, 2016, accessed Fab 28, 2020, www.3dprint.com/115090/organovo-samsara-sciences/2/
30 "BMW i Next : une voiture lectrique autonome pour 2021," Automobile Propre, last modified May 14 2016, accessed Fab 28, 2020, www.automobile-propre.com/breves/bmw-inext-voiture-electrique-autonome-2021/
31 C. Majidi, "Soft-Matter Engineering for Soft Robotics," Adv. Mater. Technol., 4 [2] 1800477 (2019).
32 F. Momeni, S.M.M. Hassani, N.X. Liu, J. Ni, "A review of 4D printing," Mater. Des., 122 42-79 (2017).   DOI
33 D. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, "Active printed materials for complex self-evolving deformations," Sci. Rep., 4 7422 (2014).   DOI
34 S. Tibbits, "4D printing: Multi-material shape change." Architect. Des., 84 [1] 116-121 (2014).   DOI
35 L. Hines, K. Petersen, G. Z. Lum, M. Sitti, "Soft Actuators for Small-scale Robotics," Adv. Mater., 29 [13] 1603483 (2017).   DOI
36 E. Lee, D. Kim, H. Kim, J. Yoon, "Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles," Sci. Rep., 5, 15124 (2015).   DOI