Browse > Article

유기 및 페로브스카이트 태양전지 전하 전달 층으로서의 이차원 물질 활용  

Heo, Do-Yeon (중앙대학교 화학신소재공학부)
Kim, Su-Yeong (중앙대학교 화학신소재공학부)
Publication Information
Ceramist / v.20, no.3, 2017 , pp. 86-101 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, "Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells," Adv. Mater., 23 [42] 4923-8 (2011).   DOI
2 X. Liu, H. Kim, L. J. Guo, "Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells," Org. Electron., 14 [12] 591-8 (2013).   DOI
3 E.-S. Choi, Y.-J. Jeon, S.-S. Kim, T.-W. Kim, Y.-J. Noh, S.-N. Kwon, S.-I. Na, "Metal chloride-treated graphene oxide to produce high-performance polymer solar cells," Appl. Phys. Lett., 107 [2] 023301 (2015).   DOI
4 J. Kim, V. C. Tung, J. Huang, "Water processable graphene oxide:Single walled carbon nanotube composite as anode modifier for polymer solar cells," Adv. Energy Mater., 1 [6] 1052-7 (2011).   DOI
5 C. Y. Lee, Q. V. Le, C. Kim, S. Y. Kim, "Use of silane-functionalized graphene oxide in organic photovoltaic cells and organic light-emitting diodes, Phys. Chem. Chem. Phys., 17 9369-74 (2015).   DOI
6 L. Chen, D. Du, K. Sun, J. Hou, J. Ouyang, "Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: Graphene oxide nanocomposites as hole-collection material," ACS Appl. Mater. Interfaces, 6 [24] 22334-42 (2014).   DOI
7 D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, A. J. Heeger, "Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells," Angew. Chem. Int. Ed., 52 [10] 2874-80 (2013).   DOI
8 J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, "Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells," Adv. Mater., 24 [17] 2228-33 (2012).   DOI
9 M. Marcia, A. Hirsch, F. Hauke, "Perylene-based non-covalent functionalization of 2D materials," FlatChem, 1 89-103 (2017).   DOI
10 M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, A. Salehi-Khojin, "Robust carbon dioxide reduction on molybdenum disulphide edges," Nat. Commun., 5 4470 (2014).   DOI
11 X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.-T. Lee, H. Zhang, B. Sun, "A solution-processed hole extraction layer made from ultrathin MoS2nanosheetsforefficientor ganicsolarcells," Adv. Energy Mater., 3 [10] 1262-8 (2013).   DOI
12 Q. V. Le, T. P. Nguyen, H. W. Jang, S. Y. Kim, "The use of UV/Ozone-treated $MoS_2$ nano sheets for extended airs tability in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 13123-8 (2014).   DOI
13 J. Liu, Y. Xue, L. Dai, "Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells," J. Phys. Chem. Lett., 3 [14] 1928-33 (2012).   DOI
14 S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu, D. Gupta, "Incorporation of silver and gold nanostructures for performance improvement in P3HT:PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer," Org. Electron., 29 79-87 (2016).   DOI
15 I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, M. C. Hersam, "Graphene oxide interlayers for robust, high-efficiency organic photovoltaics," J. Phys. Chem. Lett., 2 [24] 3006-12 (2011).   DOI
16 R. Wu, Y. Wang, L. Chen, L. Huang, Y. Chen, "Control of the oxidation level of graphene oxide for high efficiency polymer solar cells," RSC Adv., 5 [61] 49182-7 (2015).   DOI
17 M. Jorgensen, K. Norrman, F. C. Krebs, "Stability/degradation of polymer solar cells," Sol. Energy Mater. Sol. Cells, 92 [7] 686-714 (2008).   DOI
18 X. Yang, W. Fu, W. Liu, J. Hong, Y. Cai, C. Jin, M. Xu, H. Wang, D. Yang, H. Chen, "Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells," J. Mater. Chem. A, 2 7727-33 (2014).   DOI
19 J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, D. Y. Kim, "Exfoliated and partially oxidized $MoS_2$ nanosheets by one-pot reaction for efficient and stable organic solar cells", Small, 10 [12] 2319-24 (2014).   DOI
20 W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, "Ultra-stable two-dimensional $MoS_2$ solution for highly efficient organic solar cells," RSC Adv., 4 32744-8 (2014).   DOI
21 K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J.-M. Jeon, J. Y. Ham, J.-L. Lee, H. W. Jang, S. Y. Kim, "Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices," ACS Nano, 9 [4] 4146-55 (2015).   DOI
22 Q. Van Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, S. Y. Kim, "Bottom-up synthesis of MeSx nanodots for optoelectronic device applications," Adv. Opt. Mater., 4 [11] 1796-804 (2016).   DOI
23 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, "Ultrasensitive photodetectors based on monolayer $MoS_2$," Nat. Nanotech., 8 497-501 (2013).   DOI
24 M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, "Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) in polymer light-emitting diodes," Appl. Phys. Lett., 77 2255-7 (2000).   DOI
25 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, 306 [5696] 666-9 (2004).   DOI
26 F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photon., 4 611-22 (2010).   DOI
27 J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M. A. Alam, S. Kim, "Two-dimensional layered $MoS_2$ biosensors enable highly sensitive detection of biomolecules," Sci. Rep., 4 7352 (2014).
28 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotech., 7 699-712 (2012).   DOI
29 Y. Gao, H.-L. Yip, S. K. Hau, K. M. O'Malley, N. C. Cho, H. Chen, A. K.-Y. Jen, "Anode modification of inverted polymer solar cells using graphene oxide," Appl. Phys. Lett., 97 [20] 203306 (2010).   DOI
30 K. C. Kwon, K. S. Choi, S. Y. Kim, "Increased work function in few-layer graphene sheets via metal chloride doping," Adv. Funct. Mater., 22 [22] 4724-31 (2012).   DOI
31 D. Yang, L. Zhou, W. Yu, J. Zhang, C. Li, "Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells," Adv. Energy Mater., 4 [15] 1400591 (2014).   DOI
32 S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, "Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells," ACS Nano, 4 [6] 3169-74 (2010).   DOI
33 J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na, H.-G. Jeong, J. Kim, S. Lee, S.-S. Kim, H. Y. Koo, T.-W. Kim, D.-Y. Kim, "Efficient work-function engineering of solution-processed $MoS_2$ thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells," J. Mater. Chem. C, 1 3777 (2013).   DOI
34 E. O. Ortiz-Quiles, C. R. Cabrera, "Exfoliated molybdenum disulfide for dye sensitized solar cells," FlatChem, 2 1-7 (2017).   DOI
35 S. Lin, Y. Chui, Y. Li, S. P. Lau, "Liquid-phase exfoliation of black phosphorus and its applications," FlatChem, 2 15-37 (2017).   DOI
36 C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, "Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films," Adv. Funct. Mater., 19 [16] 2577-83 (2009).   DOI
37 G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, "Insulator to semimetal transition in graphene oxide," J. Phys. Chem. C, 113 [35] 15768-71 (2009).   DOI
38 T. Saga, "Advances in crystalline silicon solar cell technology for industrial mass production," NPG Asia Mater., 2 [3] 96-102 (2010).   DOI
39 M. C. Scharber, N. S. Sariciftci, "Efficiency of bulk-heterojunction organic solar cells," Prog. Polym. Sci., 38 [12] 1929-40 (2013).   DOI
40 G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, "Colloidal quantum dot solar cells," Chem. Rev., 115 [23] 12732-63 (2015).   DOI
41 M. A. Green, A. Ho-Baillie, H. J. Snaith, "The emergence of perovskite solar cells," Nature Photon., 8 506-14 (2014).   DOI
42 W. Xing, Y. Chen, X. Wang, L. Lv, X. Ouyang, Z. Ge, H. Huang, "MoS2 quantum dots with a tunable work function for high-performance organic solarcells," ACS Appl. Mater. Interfaces, 8 [40] 26916-23 (2016).   DOI
43 Q. V. Le, T. P. Nguyen, S. Y. Kim, "UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells," Phys. Status Solidi RRL, 8 [5] 390-4 (2014).   DOI
44 Q. V. Le, T. P. Nguyen, K. S. Choi, Y.-H. Cho, Y. J. Hong, S. Y. Kim, "Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells," Phys. Chem. Chem. Phys., 16 25468-72 (2014).   DOI
45 H. J. Snaith, "Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells," J. Phys. Chem. Lett., 4 [21] 3623-30 (2013).   DOI
46 J. Gong, J. Liang, K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renew. Sustain. Energy Rev., 16 [8] 5848-60 (2012).   DOI
47 F. C. Krebs, S. A. Gevorgyan, J. Alstrup, "A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies," J. Mater. Chem., 19 5442-51 (2009).   DOI
48 J. Alstrup, M. Jorgensen, A. J. Medford, F. C. Krebs, "Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating," ACS Appl. Mater. Interfaces, 2 [10] 2819-27 (2010).   DOI
49 M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, "A molecularly engineered hole-transporting material for efficient perovskite solar cells," Nat. Energy., 1 15017 (2016).   DOI
50 W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science, 350 [6263] 944-8 (2015).   DOI
51 J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun., 4 1446 (2013).   DOI
52 R. Po, C. Carbonera, A. Bernardi, N. Camaioni, "The role of buffer layers in polymer solar cells," Energy Environ. Sci., 4 285-310 (2011).   DOI
53 Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, "Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor," Nanoscale, 6 10505-10 (2014).   DOI
54 X. Gu, W. Cui, T. Song, C. Liu, X. Shi, S. Wang, B. Sun, "Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells," ChemSusChem, 7 [2] 416-20 (2014).   DOI
55 Z. Yuan, Z. Wu, S. Bai, W. Cui, J. Liu, T. Song, B. Sun, "Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics," Org. Electron., 26 327-33 (2015).   DOI
56 S. Lin, S. Liu, Z. Yang, Y. Li, T. W. Ng, Z. Xu, Q. Bao, J. Hao, C.-S. Lee, C. Surya, F. Yan, S. P. Lau, "Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics," Adv. Funct. Mater., 26 [6] 864-71 (2016).   DOI
57 J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, S.-I. Na, "Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer," Nano Energy, 12 96-104 (2015).   DOI
58 H. Pan, L. Zuo, W. Fu, C. Fan, B. Andreasen, X. Jiang, K. Norrman, F. C. Krebs, H. Chen, "MoO3-Au composite interfacial layer for high efficiency and air-stable organic solar cells," Org. Electron., 14 [3] 797-803 (2013).   DOI
59 J.-H. Choi, H.-J. Choi, J.-H. Shin, H.-P. Kim, J. Jang, H. Lee, "Enhancement of organic solar cell efficiency by patterning the PEDOT:PSS hole transport layer using nanoimprint lithography," Org. Electron., 14 [12] 3180-5 (2013).   DOI
60 Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, "Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer," Adv. Mater., 23 [19] 2226-30 (2011).   DOI
61 S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K.-Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer," Appl. Phys. Lett., 92 [25] 253301 (2008).   DOI
62 C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, "Low work function metal modified ito as cathode for inverted polymer solar cells," Sol. Energy Mater. Sol. Cells, 94 [10] 1618-21 (2010).   DOI
63 K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, "Degradation of organic solar cells due to air exposure," Sol. Energy Mater. Sol. Cells, 90 [20] 3520-30 (2006).   DOI
64 C. Li, X. Yang, Y. Zhao, P. Zhang, Y. Tu, Y. Li, "Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells," Org. Electron., 15 [11] 2868-75 (2014).   DOI
65 J. C. Yu, J. I. Jang, B. R. Lee, G.-W. Lee, J. T. Han, M. H. Song, "Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer," ACS Appl. Mater. Interfaces, 6 [3] 2067-73 (2014).   DOI
66 H. P. Kim, A. R. b. Mohd Yusoff, J. Jang, "Organic solar cells using a reduced graphene oxide anode buffer layer," Sol. Energy Mater. Sol. Cells, 110 87-93 (2013).   DOI
67 A. L. Palma, L. Cina, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, "Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells," Nano Energy, 22 349-60 (2016).   DOI
68 Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, "Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells," J. Mater. Chem. A, 3 15996-16004 (2015).   DOI
69 Y.-H. Chao, J.-S. Wu, C.-E. Wu, J.-F. Jheng, C.-L. Wang, C.-S. Hsu, "Solution-processed (graphene oxide)-(transition metal oxide) composite anodic buffer layers toward high-performance and durable inverted polymer solar cells," Adv. Energy Mater., 3 [10] 1279-85 (2013).   DOI
70 Y.-Y. Yu, B. H. Kang, Y. D. Lee, S. B. Lee, B.-K. Ju, "Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells," Appl. Surf. Sci., 287 91-6 (2013).   DOI
71 S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S. M. Jo, H.-I. Joh, S.-I. Na, "Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells," Nanoscale, 6 7183-7 (2014).   DOI
72 T.-W. Kang, Y.-J. Noh, S.-S. Kim, H.-I. Joh, S.-I. Na, "Efficient inverted-structure polymer solar cells with reduced graphene oxide for anode modification," J. Ind. Eng. Chem., 24 206-10 (2015).   DOI
73 Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process," Appl. Surf. Sci., 296 140-6 (2014).   DOI
74 N. T. Ho, V. Senthilkumar, H.-S. Cho, S. H. Nho, S. Cho, M. C. Jung, Y. B. Qi, Y. S. Kim, "Reliability improvement of bulk-heterojunction organic solar cell by using reduced graphene oxide as hole-transport layer," Phys. Status Solidi A-Appl. Mat., 211 [8] 1873-6 (2014).   DOI
75 Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, S.-S. Kim, "High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer," Sol. Energy Mater. Sol. Cells, 105 96-102 (2012).   DOI
76 A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha, L. Cina, V. Pellegrini, A. D. Carlo, F. Bonaccorso, "Few-layer $MoS_2$ flakes as active bufferlayer for stable perovskite solar cells," Adv. Energy Mater., 6 [16] 1600920 (2016).   DOI
77 D.-Y. Lee, S.-I. Na, S.-S. Kim, "Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells," Nanoscale, 8 1513-22 (2016).   DOI
78 D. Li, J. Cui, H. Li, D. Huang, M. Wang, Y. Shen, "Graphene oxide modified hole transport layer for $CH_3NH_3PbI_3$ planar heterojunction solar cells," Sol. Energy, 131 176-82 (2016).   DOI
79 A. Agresti, S. Pescetelli, L. Cina, D. Konios, G. Kakavelakis, E. Kymakis, A. D. Carlo, "Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer," Adv. Funct. Mater., 26 [16] 2686-94 (2016).   DOI
80 Y. G. Kim, K. C. Kwon, Q. V. Le, K. Hong, H. W. Jang, S. Y. Kim, "Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells," J. Power Sources, 319 1-8 (2016).   DOI
81 J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, "Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells," J. Mater. Chem. A, 3 11750-5 (2015).   DOI
82 C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, L.-J. Li, "Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells," ACS Nano, 6 [6] 5031-9 (2012).   DOI
83 G. Kakavelakis, D. Konios, E. Stratakis, E. Kymakis, "Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer," Chem. Mater., 26 [20] 5988-93 (2014).   DOI
84 S. Qu, M. Li, L. Xie, X. Huang, J. Yang, N. Wang, S. Yang, "Noncovalent functionalization of graphene attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and application as electron extraction layer of polymer solar cells," ACS Nano, 7 [5] 4070-81 (2013).   DOI
85 D. Konios, G. Kakavelakis, C. Petridis, K. Savva, E. Stratakis, E. Kymakis, "Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers," J. Mater. Chem. A, 4 1612-23 (2016).   DOI
86 Y. Shi, H. Li, L.-J. Li, "Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques," Chem. Soc. Rev., 44 2744-56 (2015).   DOI
87 H. Zhang, "Ultrathin two-dimensional nanomaterials," ACS Nano, 9 [10] 9451-69 (2015).   DOI
88 D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, "Enhanced catalytic activity in strained chemically exfoliated WS2nanosheetsforhydrogenevoluti on," Nat. Mater., 12 850-5 (2013).   DOI
89 Z. Liu, S. P. Lau, F. Yan, "Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing," Chem. Soc. Rev., 44 5638-79 (2015).   DOI
90 M. A. Mahmud, N. K. Elunalai, M. B. Upama, D. Wang, K. H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, "Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells," Sol. Energy Mater. Sol. Cells, 159 251-64 (2017).   DOI
91 P. Huang, Z. Wang, Y. Liu, K. Zhang, L. Yuan, Yi. Zhou, B. Song, Y. Li, "Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells," ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.7b06403 (2017).   DOI