Browse > Article

2차원 전이금속칼코겐 화합물 소재의 결함 제어 연구 동향  

Ji, Sang-Su (광주과학기술원 신소재공학부)
Ham, Mun-Ho (광주과학기술원 신소재공학부)
Publication Information
Ceramist / v.20, no.3, 2017 , pp. 48-59 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009).   DOI
2 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, 319 [5867] 1229-31 (2008).   DOI
3 L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow Graphene Nanoribbons from Carbon Nanotubes," Nature, 458 [7240] 877-80 (2009).   DOI
4 J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, "Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography," Adv. Mater., 25 [14] 4723-28 (2013).   DOI
5 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-Layer $MoS_2$ Transistors," Nat. Nanotechnol., 6 [3] 147-50 (2011).   DOI
6 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, " Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides," Nat. Nanotechnol., 7 [11] 699-712 (2012).   DOI
7 D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, 8 [2] 1102-20 (2014).   DOI
8 L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, "Chloride Molecular Doping Technique on 2D Materials: $WS_2$ and $MoS_2$," Nano Lett., 14 [11] 6275-80 (2014).   DOI
9 W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, and T. Lee, "Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer $MoS_2$ Synthesized by Chemical Vapor Deposition," ACS Nano, 8 [5] 4961-68 (2014).   DOI
10 L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and Lianhui Wang, "Rapid Preparation of Single-Layer Transition Metal Dichalcogenide Nanosheets via Ultrasonication Enhanced Lithium Intercalation," Chem. Commun., 52 [3] 529-32 (2016).   DOI
11 D. Kiriya, M. Tosun, P. Zhao, J. S. Kang, and A. Javey, "Air-Stable Surface Charge Transfer Doping of $MoS_2$ by Benzyl Viologen," J. Am. Chem. Soc., 136 [22] 7853-56 (2014).   DOI
12 S. KC, R. C. Longo, R. Addou, R. M Wallace, and K. Cho, "Impact of Intrinsic Atomic Defects on The Electronic Structure of $MoS_2$ Monolayers," Nanotechnology, 25 [37] 375703 (2014).   DOI
13 W. Park, Y. Kim, U. Jung, J. H. Yang, C. Cho, Y. J. Kim, S. M. N. Hasan, H. G. Kim, H. B. R. Lee, and B. H. Lee, "Complementary Unipolar $WS_2$ Field-Effect Transistors Using Fermi-Level Depinning Layers," Adv. Electron. Mater., 2 [2] 1500278 (2016).   DOI
14 A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M. J. Kim, J. Kim, K. Cho, R. Addou, C. L. Hinkle, J. Appenzeller, and R. M. Wallace, "Covalent Nitrogen Doping and Compressive Strain in $MoS_2$ by Remote $N_2$ Plasma Exposure," Nano Lett., 16 [9] 5437-43 (2016).   DOI
15 H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-Performance Single Layered $WSe_2$ p-FETs with Chemically Doped Contacts," Nano Lett., 12 [7] 3788-92 (2012).   DOI
16 H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, "Hopping Transport Through Defect-Induced Localized States in Molybdenum Disulphide," Nat. Commun., 4, 2642 (2013).   DOI
17 Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, "Manipulating the Thermal Conductivity of Monolayer $MoS_2$ via Lattice Defect and Strain Engineering," J. Phys. Chem. C, 119 [28] 16358-65 (2015).   DOI
18 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, "Activating and Optimizing $MoS_2$ Basal Planes for Hydrogen Evolution Through The Formation of Strained Sulphur Vacancies," Nat. Mater., 15 [1] 48-53 (2016).   DOI
19 H. Nan, Z. Wang, W.Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, "Strong Photoluminescence Enhancement of $MoS_2$ through Defect Engineering and Oxygen Bonding," ACS Nano, 8 [6] 5738-45 (2014).   DOI
20 V. Iberi, L. Liang, A. V. Ievlev, M. G. Stanford, M.-W. Lin, X. Li, M. Mahjouri-Samani, S. Jesse, B. G. Sumpter, S. V. Kalinin, D. C. Joy, K. Xiao, A. Belianinov, and O. S. Ovchinnikova, "Nanoforging Single Layer $MoSe_2$ Through Defect Engineering with Focused Helium Ion Beams," Sci. Rep., 6, 30481 (2016).   DOI
21 P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T.-M. Lu, B. Yu, H. Terrones, and N. Koratkar, "Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides," ACS Nano, 9 [2] 1520-27 (2015).   DOI
22 W. S. Leong, Y. Li, X. Luo, C. T. Nai, S. Y. Quek, and J. T. L. Thong, "Tuning The Threshold Voltage of $MoS_2$ Field-Effect Transistors via Surface Treatment," Nanoscale, 7 [24] 10823-31 (2015).   DOI
23 S. I. Khondaker and M. R. Islam, "Bandgap Engineering of $MoS_2$ Flakes via Oxygen Plasma: A Layer Dependent Study," J. Phys. Chem. C, 120 [25] 13801-06 (2016).   DOI
24 M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, and A. Javey, "Air-Stable n-Doping of $WSe_2$ by Anion Vacancy Formation with Mild Plasma Treatment," ACS Nano, 10 [7] 6853-60 (2016).   DOI
25 G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, "Defects Engineered Monolayer $MoS_2$ for Improved Hydrogen Evolution Reaction," Nano Lett., 16 [2] 1097-103 (2016).   DOI
26 M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, "Biexciton Emission from Edges and Grain Boundaries of Triangular $WS_2$ Monolayers," ACS Nano, 10 [2] 2399-405 (2016).   DOI
27 K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W.-K. Hong, and T. Lee, "Electrical and Optical Characterization of $MoS_2$ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules," ACS Nano, 9 [8] 8044-53 (2015).   DOI
28 Z. Wu, B. Li, Y. Xue, J. Li, Y. Zhang, and Feng Gao, "Fabrication of Defect-Rich $MoS_2$ Ultrathin Nanosheets for Application in Lithium-Ion Batteries and Supercapacitors," J. Mater. Chem. A, 3 [38] 19445-54 (2015).   DOI
29 I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, "Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived $MoS_2$," ACS Nano, 8 [10] 10551-58 (2014).   DOI
30 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, "Controllable Disorder Engineering in Oxygen-Incorporated $MoS_2$ Ultrathin Nanosheets for Efficient Hydrogen Evolution," J. Am. Chem. Soc., 135 [47] 17881-88 (2013).   DOI
31 Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, and J. Wang, "Ultrabroadband $MoS_2$ Photodetector with Spectral Response from 445 to 2717 nm," Adv. Mater., 29 [17] 1605972 (2017).   DOI
32 D. M. Sim, M. Kim, S. Yim, M.-J. Choi, J. Choi, S. Yoo, and Y. S. Jung, "Controlled Doping of Vacancy-Containing Few-Layer $MoS_2$ via Highly Stable Thiol-Based Molecular Chemisorption," ACS Nano, 9 [12] 12115-23 (2015).   DOI
33 Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, "Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering," Nat. Commun., 5, 5290 (2014).   DOI
34 W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi, X. Lin, J. Guo, X. Bai, and G. Zhang, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer $MoS_2$," J. Am. Chem. Soc., 137 [50] 15632-35 (2015).   DOI
35 J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. Wen (David) Lou, and Y. Xie, "Defect-Rich $MoS_2$ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution," Adv. Mater., 25 [40] 5807-13 (2013).   DOI
36 S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, "Broadband Few-Layer $MoS_2$ Saturable Absorbers," Adv. Mater., 26 [21] 3538-44 (2014).   DOI
37 D.-H. Kang, M.-S. Kim, J. Shim, J. Jeon, H.-Y. Park, W.-S. Jung, H.-Y. Yu, C.-H. Pang, S. Lee, and J.-H. Park, "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping," Adv. Funct. Mater., 25 [27] 4219-27 (2015).   DOI
38 S.-S. Chee, C. Oh, M. Son, G.-C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H, Lee, and M.-H. Ham, "Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides via Hydrazine Treatment," Nanoscale, 9 [27] 9333-39 (2017).   DOI
39 S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samori, "Engineering Chemically Active Defects in Monolayer $MoS_2$ Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols," Adv. Mater., 29 [18] 1606760 (2017).   DOI
40 H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, "Highly Stable and Tunable Chemical Doping of Multilayer $WS_2$ Field Effect Transistor: Reduction in Contact Resistance," ACS Appl. Mater. Interfaces, 7 [42] 23589-96 (2015).   DOI
41 J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.-A. Zhang, L. Wang, H. Zhang, A. T. S. Wee, and W. Chen, "Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate," ACS Nano, 8 [5] 5323-29 (2014).   DOI