Browse > Article

전산모사를 이용한 열전물성 계산  

O, Min-Uk (한밭대학교)
Publication Information
Ceramist / v.20, no.2, 2017 , pp. 6-17 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio Calculation of Phonon Dispersions in Semiconductors," Phys. Rev. B, 43 [9] 7231 (1991).   DOI
2 G. Deinzer, G. Birner, and D. Strauch, "Ab initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon," Phys. Rev. B, 67 [14] 144304 (2003).   DOI
3 D.A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," Appl. Phys. Lett., 91 [23] 231922 (2007).   DOI
4 K. Esfarjani, H.T. Stokes, "Method to Extract Anharmonic Force Constants from First Principles Calculations," Phys. Rev. B, 77 [14] 144112 (2008).   DOI
5 X. Tang and J. Dong, "Pressure Dependence of Harmonic and Anharmonic Lattice Dynamics in MgO: a First-Principles Calculation and Implications for Lattice Thermal Conductivity," Phys. Earth Planet. Inter., 174 [1] 33 (2009).   DOI
6 X. Tang and J. Dong, "Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior," Proc. Natl. Acad. Sci. USA, 107 [10] 4539-4543 (2010).   DOI
7 L. Chaput, A. Togo, I. Tanaka, and G. Hug, "Phonon-Phonon Interactions in Transition Metals," Phys. Rev. B, 84 [9] 094302 (2011).   DOI
8 A. Togo, L. Chaput, and I. Tanaka, "Distributions of Phonon Lifetimes in Brillouin Zones," Phys. Rev. B, 91 [9] 094306 (2015).   DOI
9 A. Katre, A. Togo, I. Tanaka, and G. K. H. Madsen, "First-Principles Study of Thermal Conductivity Cross-over in Nanostructured Zinc-Chalcogenides," J. Appl. Phys., 117 [4] 045102 (2015).   DOI
10 A. Togo and I. Tanaka, "First Principles Phonon Calculations in Materials Science," Scripta Materialia 108 1-5 (2015).   DOI
11 web page of http://atztogo.github.io/phono3py/
12 W. Li, J. Carrete, N. A. Katcho, and N. Mingo, "ShengBTE: A Solver for the Boltzmann Transport Equation for Phonons," Computer Physics Communications, 185 [6] 1747 (2014).   DOI
13 O. Hellman and D. A. Borido, "Phonon Thermal Transport in $Bi_2Te_3$ from First Principles," Phys. Rev. B, 90 [13] 134309 (2014).   DOI
14 K. Esfarjani, G. Chen, and H. T. Stokes, "Heat Transport in Silicon from First-Principles Calculations," Phys. Rev. B, 84 [8] 085204 (2011).   DOI
15 Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, "On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures," Appl. Phys. Lett., 99 [5] 053122 (2011).   DOI
16 B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, "First-Principles Simulation of Electron Mean-Free- Path Spectra and Thermoelectric Properties in Silicon," EPL(Europhysics Letters), 109 [5] 57006 (2015).   DOI
17 Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, "Phonon Conduction in PbSe, PbTe, $PbSe_{1-x}Te_x$ from First-Principles Calculations," Phys. Rev. B, 85 [18] 184303 (2012).   DOI
18 J. M. Seklton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles," Phys. Rev. B, 89 [20] 205203 (2014).   DOI
19 G. K. H. Madsen, "Automated Search for New Thermoelectric Materials: The case of LiZnSb", J. Amer. Chem. Soc., 128 [37] 12140-46 (2006).   DOI
20 P. Gorai, P. Parilla, E. S. Toberer, and Vladan Stevanovic, "Computational Exploration of the Binary A1B1 Chemical Space for Thermoelectric Performance", Chem. Mater., 27 [18] 6213-21 (2015).   DOI
21 B. Ryu and M. W. Oh, "Computational Simulations of Thermoelectric Transport Properties", J. Korean Ceramic Soc., 53 [3] 273-281 (2016).   DOI
22 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008).   DOI
23 K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, "Cubic $AgPb_mSbTe_{2+m}$: Bulk Thermoelectric Materials with High Figure of Merit," Science, 303 [5659] 818-21 (2004).   DOI
24 G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nature Mater., 7 [2] 105-14 (2008).   DOI
25 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics," Nature, 473 [7345] 66-9 (2011).   DOI
26 P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, "High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type $Na_{1-x}Pb_mSb_yTe_{m+2}$," Angew. Chem. Int. Ed., 45 [23] 3835-39 (2006).   DOI
27 G. K. H. Madsen and D. J. Singh, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities," Comput. Phys. Commun., 175 [1], 67-71 (2006).   DOI
28 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001).
29 G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996).   DOI
30 G. Kresse and J. Furthmuller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).   DOI
31 B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, "Electronic Structure and Transport Anisotropy of $Bi_2Te_3$ and $Sb_2Te_3$," Phys. Rev. B, 84 [16] 165208 (2011).   DOI
32 S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide," J. Phys. Cond. Matter., 9 [2] 461 (1997).   DOI
33 P. Larson, and W. R. L. Lambrecht, "Electronic Structure and Magnetism in $Bi_2Te_3$, Bi2Se3, and $Sb_2Te_3$ Doped with Transition Metals(Ti-Zn)," Phys. Rev. B., 78 [19] 195207 (2008).   DOI
34 P. Larson, "Effect of $p_{1/2}$ Corrections in the Electronic Structure of $Bi_2Te_3$ Compounds," Phys. Rev. B., 68 [15] 1551211 (2003).
35 N. F. Hinsche, B. Yu. Yavorsky, I. Mertig, and P. Zahn, "Influence of Strain on Anisotropic Thermoelectric Transport in $Bi_2Te_3$ and $Sb_2Te_3$," Phys. Rev. B., 84 [16] 165214 (2011).   DOI
36 M. Kim, A. J. Freeman, and C. B. Geller, "Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics: $Bi_2Te_3$," Phys. Rev. B. 72 [3] 035205 (2005).   DOI
37 P. Pecheur and G. Toussaint, "Electronic Structure and Bonding in Bismuth Telluride," Phys. Letters A, 135 [3] 223-26 (1989).   DOI
38 P. Pecheur and G. Toussaint, "Tight-binding Studies of Crystal Stability and Defects in $Bi_2Te_3$," J. Phys. Chem. Solids., 55 [4] 327-38 (1994).   DOI
39 B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee, S. D. Park, and M. W. Oh, "Prediction of the Band Structures of $Bi_2Te_3$-related Binary and Sb/ Se-doped Ternary Thermoelectric Materials", J. Kor. Phys. Soc., 68 [1] 115-20 (2016).   DOI
40 P. Giannozzi, et al, "QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials," J. of Phys.: Cond. Matter, 21 [39] 395502 (2009).   DOI
41 G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally-Localized Wannier Functions Basis", Comp. Phys. Comm., 185 [1] 422-29 (2014).   DOI
42 G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg (2001).
43 M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, "Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations," Phys. Rev. B., 77 [16] 165119 (2008).   DOI
44 G Jeffrey and Tristan S. Ursell, "Thermoelectric Efficiency and Compatibility", Phys. Rev. Lett., 91 [14] 148301 (2003).   DOI
45 S. J. Youn and A. J. Freeman, "First-Principles Electronic Structure and its Relation to Thermoelectric Properties of $Bi_2Te_3$," Phys. Rev. B., 63 [8] 851121 (2001).
46 P. Larson, S. D. Mahanti, and M. G. Kanatzdis, "Electronic Structure and Transport of $Bi_2Te_3$ and $BaBiTe_3$," Phys. Rev. B. 61 [12] 8162 (2000).   DOI
47 T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, "Transport Coefficients from First-Principles Calculations," Phys. Rev. B., 68 [12] 125210 (2003).   DOI
48 B. -L. Huang and M. Kaviany, "Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride," Phys. Rev. B., 77 [12] 125209 (2008).   DOI
49 M. W. Oh, B. Ryu, J. E. Lee, S. J. Joo, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Electronic Structure and Seebeck coefficients of $Bi_2Te_3$, $Sb_2Te_3$, and $(Bi_{0.25}Te_{0.75})_2Te_3$:A First-Principles Calculation Study," J. Nanoelec. Optoelec., 10 [3] 391-96 (2015).   DOI
50 S. Lee and P. von Allmen, "Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride," Appl. Phys. Lett., 88 [2] 022107 (2006).   DOI
51 S. Nakajima, "The Crystal Structure of $Bi_2Te_{3-x}Se_x$," J. Phys. Chem. Solids., 24 [3] 479 (1963).   DOI
52 M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Antisite Defects in n-type $Bi_2(Te,Se)_3$:ExperimentalandTheoreticalStudies," J. Appl. Phys., 115 [13], 133706 (2014).   DOI
53 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865 (1996).   DOI
54 G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer and J. V. Waszczak, "Large Electronic-Density Increase on Cooling a Layered Metal: Doped $Bi_2Te_3$," Phys. Rev. B., 46 [3] 1553 (1992).   DOI
55 T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, G. D. Mahan, "Thermoelectric Properties of $Sb_2Te_3$ Under Pressure and Uniaxial Stress," Phys. Rev. B., 68 [8] 085201 (2003).   DOI
56 H. Scherrer and S. Scherrer, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe, CRC, Boca Raton, FL. (1995).
57 H. J. Goldsmid, "The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride," Proc. Phys. Soc., 71 [4] 633 (1958).   DOI
58 A. Bid, A. Bora, A and A. K. Raychaudhuri, "Temperature Dependence of the Resistance of Metallic Nanowires of Diameter >15 nm: Applicability of Bloch-Grüneisen Theorem," Phys. Rev. B, 74 [3] 035426 (2006).   DOI
59 Y. Kang, S. H. Jeon, Y. W. Son, Y. S. Lee, M. Ryu, S. Lee, S. Han, "Microscopic Origin of Universal Quasilinear Band Structures of Transparent Conducting Oxides", Phys. Rev. Lett. 108 196404 (2012).   DOI
60 Ziman, J. M. Electrons and Phonons (Clarendon Press, Oxford, 1960).
61 J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, "Abnormal Drop in Electrical Resistivity with Impurity Doping of Single-Crystal Ag", Sci. Rep. 4 5450 (2014).
62 P. B. Allen, W. E. Pickett, and H. Krakauer, "Band-Theory Analysis of Anisotropic Transport in $La_2CuO_4$- Based Superconductors," Phys. Rev. B, 36 [7] 3926-29 (1987).
63 R. J. Mehta, et al., "Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping," Nano Lett., 12 [9] 4523-29 (2012).   DOI
64 P. B. Allen, "Empirical Electron-Phonon $\lambda$ Values from Resistivity of Cubic Metallic Elements," Phys. Rev. B, 36 [5] 2920-2923 (1987).   DOI
65 P. B. Allen, et al., "DC Transport in Metals," Phys. Rev. B, 34 [6] 4331-4333 (1986).   DOI
66 S. Y. Savrasov, and D. Y. Savrasov, "Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory," Phys. Rev. B, 54 [23] 16487-501 (1996).   DOI
67 G. P. Srivastava, Physics of Phonons (CRC, Boca Raton, FL, 1990).