Browse > Article

이산화바나듐 마이크로/나노선의 합성, 특성 및 응용  

Yun, Yeong-Hun (경북대학교 신소재공학부)
Lee, Sang-Uk (경북대학교 신소재공학부)
Publication Information
Ceramist / v.20, no.2, 2017 , pp. 34-44 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, G.H., X.Y. Deng, and R. Wen, "Electronic and optical properties of monoclinic and rutile vanadium dioxide," J. Mater. Sci., 45 [12] 3270-3275 (2010).   DOI
2 Mai, L.Q., B. Hu, T. Hu, W. Chen, and E.D. Gu, "Electrical property of Mo-doped VO2 nanowire array film by melting- quenching sol-gel method," J. Phys. Chem. B, 110 [39] 19083-19086 (2006).   DOI
3 Horrocks, G.A., S. Singh, M.F. Likely, G. Sambandamurthy, and S. Banerjee, "Scalable Hydrothermal Synthesis of Free-Standing $VO_2$ Nanowires in the M1 Phase," Acs Appl. Mater. Inter., 6 [18] 15726-15732 (2014).   DOI
4 Whittaker, L., H.S. Zhang, and S. Banerjee, "$VO_2$ nanosheets exhibiting a well-defined metal-insulator phase transition," J. Mater. Chem., 19 [19] 2968-2974 (2009).   DOI
5 Yin, H.H., J. Ni, W.T. Jiang, Z.L. Zhang, and K. Yu, "Synthesis, field emission and humidity sensing characteristics of monoclinic $VO_2$ nanostructures," Physica E, 43 [9] 1720-1725 (2011).   DOI
6 Whittaker, L., C. Jaye, Z.G. Fu, D.A. Fischer, and S. Banerjee, "Depressed Phase Transition in Solution-Grown $VO_2$ Nanostructures," J. Am. Chem. Soc., 131 [25] 8884-8894 (2009).   DOI
7 Cao, J., E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossmanan, and J. Wu, "Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams," Nature Nanotechnol., 4 [11] 732-737 (2009).   DOI
8 Lee, S., C. Cheng, H. Guo, K. Hippalgaonkar, K. Wang, J. Suh, K. Liu, and J.Q. Wu, "Axially Engineered Metal-Insulator Phase Transition by Graded Doping $VO_2$ Nanowires," J. Am. Chem. Soc., 135 [12] 4850-4855 (2013).   DOI
9 Strelcov, E., A.V. Davydov, U. Lanke, C. Watts, and A. Kolmakov, "In Situ Monitoring of the Growth, Intermediate Phase Transformations and Templating of Single Crystal $VO_2$ Nanowires and Nanoplatelets," Acs Nano, 5 [4] 3373-3384 (2011).   DOI
10 Kim, M.H., B. Lee, S. Lee, C. Larson, J.M. Baik, C.T. Yavuz, S. Seifert, S. Vajda, R.E. Winans, M. Moskovits, G.D. Stucky, and A.M. Wodtke, "Growth of Metal Oxide Nanowires from Supercooled Liquid Nanodroplets," Nano Lett., 9 [12] 4138-4146 (2009).   DOI
11 Cheng, Y., T.L. Wong, K.M. Ho, and N. Wang, "The structure and growth mechanism of $VO_2$ nanowires," J. Cryst. Growth, 311 [6] 1571-1575 (2009).   DOI
12 Kosuge, K., "The phase diagram and phase transition of the $V_2O_3-V_2O_5$, system," J. Phys. Chem. Solids, 28 1613-1621 (1967).   DOI
13 Wriedt, H.A., "The O-V (Oxygen-Vanadium) system," Bull. Alloy Phase Diagrams, 10 [3] 271-277 (1989).   DOI
14 Atkin, J.M., S. Berweger, E.K. Chavez, M.B. Raschke, J.B. Cao, W. Fan, and J.Q. Wu, "Strain and temperature dependence of the insulating phases of $VO_2$ near the metal-insulator transition," Phys. Rev. B, 85 [2] 4 (2012).
15 Cheng, C., K. Liu, B. Xiang, J. Suh, and J.Q. Wu, "Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation," Appl. Phys. Lett., 100 [10] 4 (2012).
16 Zhang, S.X., I.S. Kim, and L.J. Lauhon, "Stoichiometry Engineering of Monoclinic to Rutile Phase Transition in Suspended Single Crystalline Vanadium Dioxide Nanobeams," Nano Lett., 11 [4] 1443-1447 (2011).   DOI
17 Eyert, V., "The metal-insulator transitions of $VO_2$: a band theoretical approach," Ann. Der Physik, 11 [9] 650-702 (2002).   DOI
18 M. Marezio, D.B.M., J. P. Remeika, and P. D. Dernier, "Structural Aspects of the Metal-Insulator Transitions in Cr-Doped $VO_2$," Phys. Rev. B, 5 2541-2551 (1972).
19 Rakotoniaina, J.C., R. Mokranitamellin, J.R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, "THE THERMOCHROMIC VANADIUM DIOXIDE .1. ROLE OF STRESSES AND SUBSTITUTION ON SWITCHING PROPERTIES,". J. Solid State Chem., 103 [1] 81-94 (1993).   DOI
20 Hu, B., Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V.V. Tsukruk, and Z.L. Wang, "External-Strain Induced Insulating Phase Transition in $VO_2$ Nanobeam and Its Application as Flexible Strain Sensor," Adv. Mater., 22 [45] 5134- (2010).   DOI
21 Wall, S., D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund, J. Stahler, and M. Wolf, "Ultrafast changes in lattice symmetry probed by coherent phonons," Nat. Comm., 3 6 (2012).
22 Aetukuri, N.B., A.X. Gray, M. Drouard, M. Cossale, L. Gao, A.H. Reid, R. Kukreja, H. Ohldag, C.A. Jenkins, E. Arenholz, K.P. Roche, H.A. Durr, M.G. Samant, and S.S.P. Parkin, "Control of the metalinsulator transition in vanadium dioxide by modifying orbital occupancy," Nat. Phys., 9 [10] 661-666 (2013).   DOI
23 Liu, K., C. Cheng, Z.T. Cheng, K.V. Wang, R. Ramesh, and J.Q. Wu, "Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs," Nano Lett., 12 [12] 6302-6308 (2012).   DOI
24 Wood, R.J., E. Steltz, and R.S. Fearing, "Optimal energy density piezoelectric bending actuators," Sensor. Actuat. A-Phys., 119 [2] 476-488 (2005).   DOI
25 Mirfakhrai, T., J.D.W. Madden, and R.H. Baughman, "Polymer artificial muscles," Mater. Today, 10 [4] 30-38 (2007).   DOI
26 Liu, K., C. Cheng, J. Suh, R. Tang-Kong, D.Y. Fu, S. Lee, J. Zhou, L.O. Chua, and J.Q. Wu, Powerful, "Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition," Adv. Mater., 26 [11] 1746-1750 (2014).   DOI
27 Goodenough, J.B., "The two components of the crystallographic transition in $VO_2$," J. Solid State Chem., 3 [4] 490-500 (1971).   DOI
28 Guggenheim, C.N.B.a.H.J., "Electronic Properties of $VO_2$ near the Semiconductor-Metal Transition," Phys. Rev., 185 [3] 1022-1033 (1969).   DOI
29 Liu, K., D.Y. Fu, J.B. Cao, J. Suh, K.X. Wang, C. Cheng, D.F. Ogletree, H. Guo, S. Sengupta, A. Khan, C.W. Yeung, S. Salahuddin, M.M. Deshmukh, and J.Q. Wu, "Dense Electron System from Gate-Controlled Surface Metal-Insulator Transition," Nano Lett., 12 [12] 6272-6277 (2012).   DOI
30 Nakano, M., K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, "Collective bulk carrier delocalization driven by electrostatic surface charge accumulation," Nature, 487 [7408] 459-462 (2012).   DOI
31 Gurvitch, M., S. Luryi, A. Polyakov, and A. Shabalov, "Nonhysteretic behavior inside the hysteresis loop of $VO_2$ and its possible application in infrared imaging," J. Appl. Phys., 106 [10] 15 (2009).
32 Niklaus, F., "MEMS-Based Uncooled Infrared Bolometer Arrays : A Review," Proc. SPIE, 6836 68360D-1 (2007).
33 Zhu, J., K. Hippalgaonkar, S. Shen, K.V. Wang, Y. Abate, S. Lee, J.Q. Wu, X.B. Yin, A. Majumdar, and X. Zhang, "Temperature-Gated Thermal Rectifier for Active Heat Flow Control," Nano Lett., 14 [8] 4867-4872 (2014).   DOI
34 V. N. Andreev, F. A. Chudnovskii, A. V. Petrov, and E.I. Terukov, "Thermal conductivity of $VO_2$, $V_3O_5$, and $V_2O_3$,". Phys. Status Solidi, A Appl. Res., 48 [2] K153-K156 (1978).   DOI
35 Oh, D.W., C. Ko, S. Ramanathan, and D.G. Cahill, "Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film $VO_2$," Appl. Phys. Lett., 96 [15] 3 (2010).
36 Lee, S., K. Hippalgaonkar, F. Yang, J.W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, and J.Q. Wu, "Anomalously low electronic thermal conductivity in metallic vanadium dioxide," Science, 355 [6323] 371 (2017).   DOI
37 Yu, J.H., S.H. Nam, J.W. Lee, and J.H. Boo, "Enhanced Visible Transmittance of Thermochromic $VO_2$ Thin Films by $SiO_2$ Passivation Layer and Their Optical Characterization," Materials, 9 [7] 8 (2016).
38 Batista, C., R.M. Ribeiro, and V. Teixeira, "Synthesis and characterization of $VO_2$-based thermochromic thin films for energy-efficient windows," Nanoscale Res. Lett., 6 7 (2011).
39 Li, S.Y., K. Namura, M. Suzuki, G.A. Niklasson, and C.G. Granqvist, "Thermochromic $VO_2$ nanorods made by sputter deposition: Growth conditions and optical modeling," J. Appl. Phys., 114 [3] 11 (2013).
40 Gu, Q., A. Falk, J.Q. Wu, O.Y. Lian, and H. Park, "Current-driven phase oscillation and domain-wall propagation in $W_xV_1-xO_2$ nanobeams," Nano Lett., 7 [2] 363-366 (2007).   DOI
41 Quackenbush, N.F., J.W. Tashman, J.A. Mundy, S. Sallis, H. Paik, R. Misra, J.A. Moyer, J.H. Guo, D.A. Fischer, J.C. Woicik, D.A. Muller, D.G. Schlom, and L.F.J. Piper, "Nature of the Metal Insulator Transition in Ultrathin Epitaxial Vanadium Dioxide," Nano Lett., 13 10 4857-4861 (2013).   DOI
42 Wu, Y.F., L.L. Fan, W.F. Huang, S.M. Chen, S. Chen, F.H. Chen, C.W. Zou, and Z.Y. Wu, "Depressed transition temperature of $W_xV_1-xO_2$: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy," Phys. Chem. Chem. Phys., 16 [33] 17705-17714 (2014).   DOI
43 Yoon, J., H. Kim, X. Chen, N. Tamura, B.S. Mun, C. Park, and H. Ju, "Controlling the Temperature and Speed of the Phase Transition of $VO_2$ Microcrystals," Acs Appl. Mater. Inter., 8 [3] 2280-2286 (2016).   DOI
44 Muraoka, Y. and Z. Hiroi, "Metal-insulator transition of $VO_2$ thin films grown on $TiO_2$ (001) and (110) substrates," Appl. Phys. Lett., 80 [4] 583-585 (2002).   DOI
45 Fan, L.L., S. Chen, Z.L. Luo, Q.H. Liu, Y.F. Wu, L. Song, D.X. Ji, P. Wang, W.S. Chu, C. Gao, C.W. Zou, and Z.Y. Wu, "Strain Dynamics of Ultrathin $VO_2$ Film Grown on $TiO_2$ (001) and the Associated Phase Transition Modulation," Nano Lett., 14 [7] 4036-4043 (2014).   DOI
46 Shibuya, K., J. Tsutsumi, T. Hasegawa, and A. Sawa, "Fabrication and Raman scattering study of epitaxial $VO_2$ films on $MgF_2$ (001) substrates," Appl. Phys. Lett., 103 [2] 4 (2013).