Browse > Article

유-무기 복합 열전소재 합성 및 특성  

Kim, Ji-Won (재료연구소)
Im, Jae-Hong (재료연구소)
Publication Information
Ceramist / v.20, no.2, 2017 , pp. 18-24 More about this Journal
Keywords
Thermoelectric; Organic-inorganic hybrid thermoelectric materials; Nanoengineering; Thermoelectric properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nat Mater, 2008. 7(2): p. 105-114.   DOI
2 Xie, W., et al., Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009. 94(10): p. 102111.   DOI
3 Sang Il, K., et al., Enhancement of Seebeck Coefficient in Bi 0.5 Sb 1.5 Te 3 with High-Density Tellurium Nanoinclusions. Applied Physics Express, 2011. 4(9): p. 091801.   DOI
4 Heremans, J.P., et al., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science, 2008. 321(5888): p. 554.   DOI
5 Hong, M., et al., n-Type Bi2Te3-xSex Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. ACS Nano, 2016. 10(4): p. 4719-4727.   DOI
6 Carrete, J., et al., Thermoelectric Properties of Hybrid Organic-Inorganic Superlattices. The Journal of Physical Chemistry C, 2012. 116(20): p. 10881-10886.   DOI
7 Kim, Y.H., et al., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials, 2011. 21(6): p. 1076-1081.   DOI
8 Sales, B.C., Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials. MRS Bulletin, 2013. 23(1): p. 15-21.
9 Martin-Gonzalez, M., O. Caballero-Calero, and P. Diaz-Chao, Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews, 2013. 24: p. 288-305.   DOI
10 Dresselhaus, M.S., et al., New Directions for Low-Dimensional Thermoelectric Materials. Advanced Materials, 2007. 19(8): p. 1043-1053.   DOI
11 Ko, D.-K., Y. Kang, and C.B. Murray, Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt-Sb2Te3 Nanocomposites. Nano Letters, 2011. 11(7): p. 2841-2844.   DOI
12 Medlin, D.L. and G.J. Snyder, Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science. Current Opinion in Colloid & Interface Science, 2009. 14(4): p. 226-235.   DOI
13 Kumar, S.R.S., N. Kurra, and H.N. Alshareef, Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films. Journal of Materials Chemistry C, 2016. 4(1): p. 215-221.   DOI
14 Zhang, Q., et al., Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently. Advanced Materials, 2014. 26(40): p. 6829-6851.   DOI
15 Wang, Q., et al., Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. Journal of Materials Chemistry, 2012. 22(34): p. 17612-17618.   DOI
16 Sun, Y., et al., Flexible n-Type High- Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method. Advanced Materials, 2016. 28(17): p. 3351-3358.   DOI
17 Du, Y., et al., Research progress on polymer-inorganic thermoelectric nanocomposite materials. Progress in Polymer Science, 2012. 37(6): p. 820-841.   DOI
18 Gayner, C. and K.K. Kar, Recent advances in thermoelectric materials. Progress in Materials Science, 2016. 83: p. 330-382.   DOI
19 Bubnova, O., et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater, 2011. 10(6): p. 429-433.   DOI
20 Kim, G.H., et al., Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater, 2013. 12(8): p. 719-723.   DOI
21 Cho, B., et al., Single-Crystal Poly(3,4- ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity. Nano Letters, 2014. 14(6): p. 3321-3327.   DOI
22 Lu, G., et al., Preparation of Highly Conductive Gold-Poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4- ethylenedioxythiophene) Nanotubes. The Journal of Physical Chemistry C, 2007. 111(16): p. 5926-5931.   DOI
23 Wang, Y., K. Cai, and X. Yao, Facile Fabrication and Thermoelectric Properties of PbTe-Modified Poly(3,4-ethylenedioxythiophene) Nanotubes. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1163-1166.   DOI
24 Choi, J., et al., High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions. Advanced Energy Materials, 2016. 6(9): p. 1502181.   DOI
25 See, K.C., et al., Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics. Nano Letters, 2010. 10(11): p. 4664-4667.   DOI
26 Yee, S.K., et al., Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Physical Chemistry Chemical Physics, 2013. 15(11): p. 4024-4032.   DOI
27 Du, Y., et al., Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films. ACS Applied Materials & Interfaces, 2014. 6(8): p. 5735-5743.   DOI
28 Ju, H. and J. Kim, Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymerbased thermoelectric devices. Chemical Engineering Journal, 2016. 297: p. 66-73.   DOI