Browse > Article

그래핀-세라믹 구조세라믹스 동향  

Kim, Jong-Yeong (한국세라믹기술원)
Lee, Seong-Min (한국세라믹기술원)
Publication Information
Ceramist / v.19, no.1, 2016 , pp. 33-44 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Yang, J. J. Wang, D. N. Wang, X. F. Li, D. S. Geng, G. X. Liang, M. Gauthier, R. Y. Li, and X. L. Sun, "3D Porous $LiFePO_4$/Graphene Hybrid Cathodes with Enhanced Performance for Li-Ion Batteries," J. Power Sour., 208 340-44 (2012).   DOI
2 R. G. Duan and A. K. Mukherjee, "Synthesis of SiCNO Nanowires through Heat-Treatment of Polymer-Functionalized Single-Walled Carbon Nanotubes," Adv. Mater., 16 [13] 1106 (2004).   DOI
3 L. N. An, W. X. Xu, S. Rajagopalan, C. M. Wang, H. Wang, Y. Fan, L. G. Zhang, D. P. Jiang, J. Kapat, L. Chow, B. H. Guo, J. Liang, and R. Vaidyanathan, "Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites," Adv. Mater., 16 [22] 2036 (2004).   DOI
4 A. R. Bunsell, Fundamentals of Fibre Reinforced Composite Materials; pp. 398, CRC Press, London, 2005.
5 J. Cho, A. R. Boccaccini, and M. S. P. Shaffer, "Ceramic Matrix Composites Containing Carbon Nanotubes," J. Mater. Sci., 44 [8] 1934-51 (2009).   DOI
6 G. L. Hwang and K. C. Hwang, "Carbon Nanotube Reinforced Ceramics," J. Mater. Chem., 11 [6] 1722-25 (2001).   DOI
7 G. D. Zhan and A. K. Mukherjee, "Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties," Int. J. Appl. Ceram. Techol., 1 [2] 161-71 (2004).
8 J. Cho, F. Inam, M. J. Reece, Z. Chlup, I. Dlouhy, M. S. P. Shaffer, and A. R. Boccaccini, "Carbon Nanotubes: Do They Toughen Brittle Matrices?," J. Mater. Sci., 46 [14] 4770-79 (2011).   DOI
9 J. W. Ning, J. J. Zhang, Y. B. Pan, and J. K. Guo, "Fabrication and Mechanical Properties of $SiO_2$ Matrix Composites Reinforced by Carbon Nanotube," Mater. Sci. Eng. A: Struct., 357 [1-2] 392-96 (2003).   DOI
10 R. Sivakumar, S. Q. Guo, T. Nishimura, and Y. Kagawa, "Thermal Conductivity in Multi-Wall Carbon Nanotube/Silica-Based Nanocomposites," Scr. Mater., 56 [4] 265-68 (2007).   DOI
11 G. D. Zhan, J. D. Kuntz, J. E. Garay, and A. K. Mukherjee, "Electrical Properties of Nanoceramics Reinforced with Ropes of Single-Walled Carbon Nanotubes," Appl. Phys. Lett., 83 [6] 1228-30 (2003).   DOI
12 S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007).   DOI
13 F. Inam, H. X. Yan, D. D. Jayaseelan, T. Peijs, and M. J. Reece, "Electrically Conductive Alumina-Carbon Nanocomposites Prepared by Spark Plasma Sintering," J. Eur. Ceram. Soc., 30 [2] 153-57 (2010).   DOI
14 J. P. Fan, D. M. Zhuang, D. Q. Zhao, G. Zhang, M. S. Wu, F. Wei, and Z. J. Fan, "Toughening and Reinforcing Alumina Matrix Composite with Single-Wall Carbon Nanotubes," Appl. Phys. Lett., 89 [12] 121910 (2006).   DOI
15 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-Based Composite Materials," Nature, 442 [7100] 282-86 (2006).   DOI
16 A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 [3] 183-91 (2007).   DOI
17 C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321 [5887] 385-88 (2008).   DOI
18 A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett., 8 [3] 902-7 (2008).   DOI
19 J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, F. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, "Electromagnetic Interference Shielding of Graphene/Epoxy Composites," Carbon, 47 [3] 922-25 (2009).   DOI
20 K. Kalaitzidou, H. Fukushima, and L. T. Drzal, "A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Compos. A: Appl. S, 38 [7] 1675-82 (2007).   DOI
21 A. Yasmin, J. J. Luo, and I. M. Daniel, "Processing of Expanded Graphite Reinforced Polymer Nanocomposites," Compos. Sci. Technol., 66 [9] 1182-89 (2006).   DOI
22 L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011).   DOI
23 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306 666-69 (2004).   DOI
24 S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff," Graphene-Silica Composite Thin Films as Transparent Conductors," Nano Lett., 7 [7] 1888-92 (2007).   DOI
25 L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang," Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010).   DOI
26 C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, "A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks," Crit. Rev. Toxicol., 36 [3] 189-217 (2006).   DOI
27 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-Dimensional Atomic Crystals," Proc. Natl. Acad. Sci. U.S.A., 102 10451-53 (2005).   DOI
28 B. Jayasena and S. Subbiah, "A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphenes," Nanoscale Res. Lett., 6 [95] 48 (2011).
29 F. Ji, Y. L. Li, J. M. Feng, D. Su, Y. Y. Wen, Y. Feng, and F. Hou, "Electrochemical Performance of Graphene Nanosheets and Ceramic Composites as Anodes for Lithium Batteries," J. Mater. Chem., 19 [47] 9063-67 (2009).   DOI
30 J. H. Lehman, K. E. Hurst, G. Singh, E. Mansfield, J. D. Perkins, and C. L. Cromer, "Core-Shell Composite of SiCN and Multiwalled Carbon Nanotubes from Toluene Dispersion," J. Mater. Sci., 45 [15] 4251-54 (2010).   DOI
31 J. Sun and L. Gao, "Development of a Dispersion Process for Carbon Nanotubes in Ceramic Matrix by Heterocoagulation," Carbon, 41 [5] 1063-68 (2003).   DOI
32 B. Milsom, G. Viola, Z. P. Gao, F. Inam, T. Peijs, and M. J. Reece, "The Effect of Carbon Nanotubes on the Sintering Behaviour of Zirconia," J. Eur. Ceram. Soc., 32 [16] 4149-56 (2012).   DOI
33 B. Lawn, "Indentation Fracture", in 'Fracture of brittile solids-second edition', Press Syndicate of the University of Cambridge, Cambridge, 1993.
34 X. T. Wang, N. P. Padture, and H. Tanaka, "Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 [8] 539-44 (2004).   DOI
35 G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007).   DOI
36 B. W. Sheldon and W. A. Curtin, "Nanoceramic Composites: Tough to Test," Nat. Mater., 3 [8] 505-6 (2004).   DOI
37 L. Kvetkova, A. Duszova, P. Hvizdos, J. Dusza, P. Kun, and C. Balazsi, "Fracture Toughness and Toughening Mechanisms in Graphene Platelet Reinforced $Si_3N_4$ Composites," Scr. Mater., 66 [10] 793-96 (2012).   DOI
38 Y. C. Fan, W. Jiang, and A. Kawasaki, "Highly Conductive Few-Layer Graphene/$Al_2O_3$ Nanocomposites with Tunable Charge Carrier Type," Adv. Funct. Mater., 22 [18] 3882-89 (2012).   DOI
39 J. Chen, M. Duan, and G. Chen, "Continuous Mechanical Exfoliation of Graphene Sheets via Three-Roll Mill," J. Mater. Chem., 22 19625 (2012).   DOI
40 J. Liu, H. X. Yan, M. J. Reece, and K. Jiang, "Toughening of Zirconia/Alumina Composites by the Addition of Graphene Platelets," J. Eur. Ceram Soc., 32 [16] 4185-93 (2012).   DOI
41 S. Rul, F. Lefevre-schlick, E. Capria, C. Laurent, and A. Peigney, "Percolation of Single-Walled Carbon Nanotubes in Ceramic Matrix Nanocomposites," Acta Mater., 52 [4] 1061-67 (2004).   DOI
42 C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/Silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 [12] 3873-80 (2011).   DOI
43 M. Estili, and A. Kawasaki, "Engineering Strong Intergraphene Shear Resistance in Multi-walled Carbon Nanotubes and Dramatic Tensile Improvements," Adv. Mater., 22 [5] 607 (2010).   DOI
44 Y. Yang, Y. Wang, W. Tian, Z. Q. Wang, Y. Zhao, L. Wang, and H. M. Bian, "Reinforcing and Toughening Alumina/Titania Ceramic Composites with Nano-Dopants from Nanostructured Composite Powders," Mat. Sci. Eng. A: Struct, 508 [1-2] 161-66 (2009).   DOI
45 L. Lin, X. Zheng, S. Zhang, and D. A. Allwood, "Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide," Adv. Mater.Interfaces, 1 1300078 (2014).   DOI
46 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nanotechnol., 3 563-68 (2008).   DOI
47 M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, "Liquid Phase Production of Graphene by Exfoliation of Graphite," J. Am. Chem. Soc., 131 3611-20 (2009).   DOI
48 U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-Concentration Solvent Exfoliation of Graphene," Small, 6 864-71 (2010).   DOI
49 A. Ciesielski and P. Samori, "Graphene via Sonication Assisted Liquid-Phase Exfoliation," Chem. Soc. Rev., 43 381-98 (2014).   DOI
50 G. Cravotto and P. Cintas, "Sonication-Assisted Fabrication and Post-Synthetic Modifications of Graphene-Like Materials," Chem. Eur. J., 16 5246-59 (2010).   DOI
51 C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. R ohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010).   DOI
52 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling," J. Mater. Chem., 20 5817 (2010).   DOI
53 C. Zheng, M. Feng, X. Zhen, J. Huang, and H. B. Zhan, "Materials Investigation of Multi-Walled Carbon Nanotubes Doped Silica Gel Glass Composites," J. Non- Cryst. Solids, 354 [12-13] 1327-30 (2008).   DOI
54 J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, M. J. Reece, and V. Puchy, "Hot Pressed and Spark Plasma Sintered Zirconia/Carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009).   DOI
55 C. Balazsi, Z. Shen, Z. Konya, Z. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, "Processing of Carbon Nanotube Reinforced Silicon Nitride Composites by Spark Plasma Sintering," Compos. Sci. Technol., 65 [5] 727-33 (2005).
56 S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007).   DOI
57 A. R. Boccaccini, B. J. C. Thomas, G. Brusatin and P. Colombo, "Mechanical and Electrical Properties of Hot-Pressed Borosilicate Glass Matrix Composites Containing Multi-Wall Carbon Nanotubes," J. Mater. Sci., 42 [6] 2030-36 (2007).   DOI
58 J. A. Lewis, "Colloidal Processing of Ceramics," J. Am. Ceram. Soc., 83 [10] 2341-59 (2000).   DOI
59 H. B. Zhan, W. Z. Chen, M. Q. Wang, Zhengchan, and C. L. Zou, "Optical Limiting Effects of Multi-Walled Carbon Nanotubes Suspension and Silica Xerogel Composite," Chem. Phys. Lett., 382 [3-4] 313-17 (2003).   DOI
60 Y. Zeng, Y. Zhou, L. Kong, T. Zhou, and G. Shi, "A Novel Composite of $SiO_2$-Coated Graphene Oxide and Molecularly Imprinted Polymers for Electrochemical Sensing Dopamine," Biosens. Bioelectr., 45 25-33 (2013).   DOI
61 W. Y. Cheng, C. C. Wang, and S. Y. Lu, "Graphene Aerogels as a Highly Efficient Counter Electrode Material for Dye-Sensitized Solar Cells," Carbon, 54 291-99 (2013).   DOI
62 A. E. Del Rio-Castillo, C. Merino, E. Diez-Barra, and E. V'azquez, "Selective Suspension of Single Layer Graphene Mechanochemically Exfoliated from Carbon Nanofibres," Nano Res., 7 963-72 (2014).   DOI
63 I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. Dai, and J. B. Baek, "Edge-Carboxylated Graphene Nanosheets via Ball Milling," Proc. Natl. Acad. Sci. U. S. A, 109 5588-93 (2012).   DOI
64 C. Damm, T. J. Nacken, and W. Peukert, "Quantitative Evaluation of Delamination of Graphite by Wet Media Milling," Carbon, 81 284-94 (2015).   DOI
65 R. Aparna, N. Sivakumar, A. Balakrishnan, A. Sreekumar Nair, S. V. Nair, and K. R. V. Subramanian, "An Effective Route to Produce Few-Layer Graphene Using Combinatorial Ball Milling and Strong Aqueous Exfoliants," J. Renewable Sustainable Energy, 5 033123 (2013).   DOI
66 Z. Shen, J. Li, M. Yi, X. Zhang, and S. Ma, "Preparation of Graphene by Jet Cavitation," Nanotechnology, 22 365306 (2011).   DOI
67 M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu, S. Liang, X. Zhang, and S. Ma, "Hydrodynamics-Assisted Scalable Production of Boron Nitride Nanosheets and their Application in Improving Oxygen-Atom Erosion Resistance of Polymeric Composites," Nanoscale, 5 10660-67(2013).   DOI
68 K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, "Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids," Nat. Mater., 13 624-30 (2014).   DOI
69 E. Varrla, K. R. Paton, C. Backes, A. Harvey, R. J. Smith, J. McCauley, and J. N. Coleman, "Turbulence-Assisted Shear Exfoliation of Graphene Using Household Detergent and a Kitchen Blender," Nanoscale, 6 11810-19 (2014).   DOI
70 L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, "A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces," RSC Adv., 4 36464 (2014).   DOI
71 Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22 [35] 3906-24 (2010).   DOI
72 S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009).   DOI
73 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, "Graphene Based Materials: Past, Present and Future," Prog. Mater. Sci., 56 [8] 1178-271 (2011).   DOI
74 K. Wang, Y. F. Wang, Z. J. Fan, J. Yan, and T. Wei, "Preparation of Graphene Nanosheet/ Alumina Composites by Spark Plasma Sintering," Mater. Res. Bull., 46 [2] 315-18 (2011).   DOI
75 L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011).   DOI
76 Y. C. Fan,L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010).   DOI
77 O. Tapaszto, L. Tapaszto, M. Marko, F. Kern, R. Gadow, and C. Balazsi, "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 [4-6] 340-43 (2011).   DOI
78 T. He, J. L. Li, L. J. Wang, J. J. Zhu, and W. Jiang, "Preparation and Consolidation of Alumina/Graphene Composite Powders," Mater. Trans., 50 [4] 749-51 (2009).   DOI
79 P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, "Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites," Ceram. Int., 38 [1] 211-16 (2012).   DOI
80 M. Yi and Z. Shen, "Kitchen Blender for Producing High-Quality Few-Layer Graphene," Carbon, 78 622-26 (2014).   DOI
81 J. Echeberria, N. Rodriguez, J. Vleugels, K. Vanmeensel, A. Reyes- Rojas, A. Garcia-Reyes, C. Dominguez-Rios, A. Aguilar-Elguezabal and M. H. Bocanegra-Bernal, "Hard and Tough Carbon Nanotube-Reinforced Zirconia-Toughened Alumina Composites Prepared by Spark Plasma Sintering," Carbon, 50 [2] 706-17 (2012).   DOI