Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.3.09

Microstructural Control of Pyrolytic Carbon Layer Deposited from Methane by Isotropic Chemical Vapor Infiltration  

Jeong, Young-Seok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Choi, Kyoon (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Yoo, Ho Gyu (Department of Materials Science and Engineering, Korea University)
Publication Information
Abstract
Pyrolytic carbon (PyC) layers were deposited using methane. The PyC layer deposited with 5% methane showed highly textured graphite, while that deposited using 100% methane showed low textured graphite. The degrees of anisotropy of the carbon layers were measured using an X-ray diffractometer, a transmission electron microscope, and a Raman spectroscope, and the results were compared with those reported previously. The orientation angles obtained from the fast Fourier transformation of the high-resolution transmission electron microscopy images and the ID/IG intensity ratios obtained from the Raman spectra were used to evaluate the anisotropy of the PyC layers.
Keywords
Ceramic matrix composite; Chemical vapor infiltration; Pyrolytic carbon; Transmission electron microscope; Raman spectroscope;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. Manoj and A. G. Kunjomana, "Study of Stacking Structure of Amorphous Carbon by X-Ray Diffraction Technique," Int. J. Electrochem. Sci., 7 [4] 3127-34 (2012).
2 X. Bourrat, A. Fillion, R. Naslain, G. Chollon, and M. Brendle, "Regenerative Laminar Pyrocarbon," Carbon, 40 [15] 2931-45 (2002).   DOI
3 T. H. Simm, "Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys," Crystals, 8 [5] 1-31 (2018).
4 Y. Kuen, R. L. V. Wal, and L. B. Andre, "Development of an HRTEM Image Analysis Method to Quantify Carbon Nanostructure," Combust. Flame, 158 [9] 1837-51 (2011).   DOI
5 Y. Kaburagi, A. Yoshida and Y. Hishiyama, "Chap.7 - Raman Spectroscopy," pp. 126-50 in Materials Science and Engineering of Carbon: Characterization, Ed. by I. Michio and F. Kang, Butterworth-Heinemann, Boston, 2016.
6 A. Merlen, J. G. Buijnsters, and C. Pardanaud, "A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons," Coatings, 7 [10] 153 (2017).   DOI
7 J. Y. Park, D. Kim, H.-G. Lee, W.-J. Kim, and M. Pouchon, "Oxidation Behaviors of Si Composites Tested at High Temperature in Air by an Ablation Method," J. Korean Ceram. Soc., 55 [5] 498-503 (2018).   DOI
8 K.-M. Kim, Y. S. Hahn, S.-M. Lee, K. Choi, and J.-H. Lee, "Mechanical Properties of $C_f$/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis," J. Korean Ceram. Soc., 55 [4] 392-99 (2018).   DOI
9 J. Yin, H. B. Zhang, X. Xiong, J. L. Zuo, and H. J. Tao, "Ablation Properties of C/C-SiC Composites Tested on an Arc Heater," Solid State Sci., 13 [11] 2055-59 (2011).   DOI
10 J. E. Grady, C. E. Smith, R. M. Sullivan, V. L. Wiesner, J. B. Hurst, S. M Arnold, D. Zhu, A. S. Almansour, R. T. Bhatt, S. Kalluri, and S. Raj, "Overview of ceramic matrix composite research at NASA Glenn Research Center," Proc. ECI Conf., Cleveland, OH, 2017.
11 W. Yang, T. Noda, H. Araki, J. N. Yu, and A. Kohyama, "Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI-SiC matrix composites," Mater. Sci. Eng., 345 [1-2] 28-35 (2003).   DOI
12 B. Reznik, M. Guellali, D. Gerthsen, R. Oberacker, and W. Hoffmann, "Microstructure and Mechanical Properties of Carbon-Carbon Composites with Multilayered Pyrocarbon Matrix," Mater. Lett., 52 [1-2] 14-9 (2002).   DOI
13 O. Feron, F. Langlais, R. Naslain, and J. Thebault, "On Kinetic and Microstructural Transitions in the CVD of Pyrocarbon from Propane," Carbon, 37 [9] 1343-53 (1999).   DOI
14 A. Udayakumar, A. S. Ganesh, S. Raja, and M. Balasubramanian, "Effect of Intermediate Heat Treatment on Mechanical Properties of SiCf/SiC Composites with BN Interphase Prepared by ICVI," J. Eur. Ceram. Soc., 31 [6] 1145-53 (2011).   DOI
15 M. L. Lieberman and H. O. Pierson, "The Chemical Deposition of Carbon on Carbon Fibers," Carbon, 12 [3] 233-42 (1974).   DOI
16 J. M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, "Quantitative Structural and Textural Assessment of Laminar Pyrocarbons through Raman Spectroscopy, Electron Diffraction and Few Other Techniques," Carbon, 44 [9] 1833-44 (2006).   DOI
17 P. J. Meadows, E. Lopez-Honorato, and P. Xiao, "Fluidized Bed Chemical Vapor Deposition of Pyrolytic Carbon - II. Effect of Deposition Conditions on Anisotropy," Carbon, 47 [1] 251-62 (2009).   DOI
18 N. M. Ghoniem, "High-Temperature Mechanical and Material Design for SiC Composites," J. Nucl. Mater., 191-194 515-19 (1992).   DOI
19 S Bertrand, C Droillard, R Pailler, X Bourrat, and R Naslain, "TEM Structure of $(PyC/SiC)_n$ Multilayered Interphases in SiC/SiC Composites," J. Eur. Ceram. Soc., 20 [1] 1-13 (2000).   DOI
20 S. Bertrand, P. Forio, R. Pailler, and J. Lamon, "Hi-Nicalon/SiC Minicomposites with $(Pyrocarbon/SiC)_n$ Nanoscale Multilayered Interphases," J. Am. Ceram. Soc., 82 [9] 2465-73 (1999).   DOI
21 S. Pompidou and J. Lamon, "Analysis of Crack Deviation in Ceramic Matrix Composites and Multilayers Based on the Cook and Gordon Mechanism," Compos. Sci. Technol., 67 [10] 2052-60 (2007).   DOI
22 M. Guellali, R. Oberacker, and M. J. Hoffmann, "Influence of the Matrix Microstructure on the Mechanical Properties of CVI-Infiltrated Carbon Fiber Felts," Carbon, 43 [9] 1954-60 (2005).   DOI
23 K. Choi and J.-W. Kim, "CFD Simulation of Chemical Vapor Deposition of Silicon Carbide in $CH_3SiCl_3-H_2$ System," Curr. Nanosci., 10 [1] 135-37 (2014).   DOI
24 N. Iwashita, C. R. Park, H. Fujimoto, M. Shiraishi, and M. Inagaki, "Specification for a Standard Procedure of X-Ray Diffraction Measurements on Carbon Materials," Carbon, 42 [4] 701-14 (2004).   DOI
25 M. Seyring, A. Simon, I. Voigt, U. Ritter, and M. Rettenmayr, "Quantitative Crystallographic Analysis of Individual Carbon Nanofibers Using High Resolution Transmission Electron Microscopy and Electron Diffraction," Carbon, 116 347-55 (2017).   DOI
26 E. Beerdsen, B. Smit, and D. Dubbeldam, "Molecular Simulation of Loading Dependent Slow Diffusion in Confined Systems," Phys. Rev. Lett., 93 [24] 24830-1-3 (2004).
27 S. Bammidipati, G. D. Stewart, J. R. Elliott, S. A. Gokoglu, and M. J. Purdy, "Chemical Vapor Deposition of Carbon on Graphite by Methane Pyrolysis," AIChE J., 42 [11] 3123-32 (1996).   DOI
28 P. Delhaes, Fibers and Composites; Vol. 2, pp. 118-21, CRC Press, Florida, 2003.