Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.5.12

Recent Developments in Piezoelectric Crystals  

Zhang, Shujun (ISEM, Australian Institute of Innovative Materials, University of Wollongong)
Li, Fei (EMRL, Key Lab of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University)
Yu, Fapeng (Institute of Crystal Materials, Shandong University)
Jiang, Xiaoning (Department of Mechanical and Aerospace Engineering, North Carolina State University)
Lee, Ho-Yong (Department of Materials Science and Engineering, Sunmoon University)
Luo, Jun (TRS Technologies, Inc., 2820 East College Avenue, State College)
Shrout, T.R. (Materials Research Institute, Pennsylvania State University)
Publication Information
Abstract
Piezoelectric materials are essential parts of the electronics and electrical equipment used for consumer and industrial applications, such as ultrasonic piezoelectric transducers, sensors, actuators, transformers, and resonators. In this review, the development of piezoelectric materials and the figures of merit for various electromechanical applications are surveyed, focusing on piezoelectric crystals, i.e., the high-performance relaxor-$PbTiO_3$-based perovskite ferroelectric crystals and nonferroelectric high-temperature piezoelectric crystals. The uniqueness of these crystals is discussed with respect to different usages. Finally, the existing challenges and perspective for the piezoelectric crystals are discussed, with an emphasis on the temperature-dependent properties, from cryogenic temperatures up to the ultrahigh-temperature usage range.
Keywords
Piezoelectric; Ferroelectric; Single Crystal; Usage temperature range;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A. Moure, "Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System," Appl. Sci., 8 [1] 918-23 (2018).   DOI
2 Z.-G. Gai, J.-F. Wang, M.-L. Zhao, C.-M. Wang, G.-Z. Zang, B.-Q. Ming, and P. Qi, "High Temperature $(NaBi)_{0.48-0.04}Bi_2Nb_2O_9}$-Based Piezoelectric Ceramics," Appl. Phys. Lett., 89 [1] 012907 (2006).   DOI
3 C.-M. Wang, J.-F. Wang, S. Zhang, and T. R. Shrout, "Piezoelectric and Electromechanical Properties of Ultrahigh Temperature $CaBi_2Nb_2O_9$ Ceramics," Phys. Status Solidi RRL, 3 [2-3] 49-51 (2009).   DOI
4 T. Yamada, N. Niizeki, and H. Toyoda, "Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals," Jpn. J. Appl. Phys., 6 [2] 151-55 (1967).   DOI
5 P. Ueberschlag, "PVDF Piezoelectric Polymer," Sens. Rev., 21 [2] 118-26 (2001).   DOI
6 F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, "A History of Medical and Biological Imaging with Polyvinylidene Fluoride (PVDF) Transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47 [6] 1363-71 (2000).   DOI
7 L. F. Brown, "Ferroelectric Polymers: Current and Future Ultrasound Applications," 539-50 (1992). Proceeding Paper?
8 R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross, "Composite Piezoelectric Transducers," Mater. Des., 2 [2] 93-106 (1980).   DOI
9 X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, "Complete Set of Material Constants of $Pb(In_{1⁄2}Nb_{1⁄2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Single Crystal with Morphotropic Phase Boundary Composition," J. Appl. Phys., 106 [7] 074112 (2009).   DOI
10 X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, "A Complete Set of Material Properties of Single Domain 0.26$Pb(In_{1⁄2}Nb_{1⁄2})O_3$-0.46$Pb(Mg_{1/3}Nb_{2/3})O_3$-0.28$PbTiO_3$ Single Crystals," Appl. Phys. Lett., 96 [1] 012907 (2010).   DOI
11 S. Zhang, J. Luo, W. Hackenberger, N. P. Sherlock, R. J. Meyer, Jr., and T. R. Shrout, "Electromechanical Characterization of [Formula: See Text] Crystals as a Function of Crystallographic Orientation and Temperature," J. Appl. Phys., 105 [10] 104506 (2009).   DOI
12 X. Li and H. Luo, "The Growth and Properties of Relaxor-Based Ferroelectric Single Crystals," J. Am. Ceram. Soc., 93 [10] 2915-28 (2010).   DOI
13 Y. Zhang, D. A. Liu, Q. Zhang, W. Wang, B. Ren, X. Zhao, and H. Luo, "Complete Set of Material Constants of <011>-Poled Rhombohedral Single-Crystal $0.25Pb(In_{1/2}Nb_{1/2})O_3-0.47Pb(Mg_{1/3}Nb_{2/3})O_3$-0.28$PbTiO_3$," J. Electron. Mater., 40 [1] 92-6 (2010).   DOI
14 Y. Wang, Z. Wang, W. Ge, C. Luo, J. Li, D. Viehland, J. Chen, and H. Luo, "Temperature-Induced and Electric-Field-Induced Phase Transitions in Rhombohedral $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ternary Single Crystals," Phys. Rev. B, 90 [13] 134107 (2014).   DOI
15 N. Hidayah, N. Yasuda, H. Ohwa, Y. Tachi, Y. Yamashita, and M. Iwata, "Poling and Depoling Effects on Dielectric Properties and Domain Structures in Relaxor 24$Pb(In_{1/2}Nb_{1/2})O_3-46Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3$ near a Morphotropic Phase Boundary Composition," Jpn. J. Appl. Phys., 51 [9S1] 09LC6 (2012).
16 Y. V. Pisarevsky, P. Senushencov, P. Popov, and B. Mill, "New Strong Piezoelectric $La_3Ga_{5.5}Nb_{0.5}O_{14}$ with Temperature Compensation Cuts," pp. 653-56 in Proceedings of IEEE International Frequency Control Symposium, 1995.
17 C. Shen, H. Zhang, H. Cong, H. Yu, J. Wang, and S. Zhang, "Investigations on the Thermal and Piezoelectric Properties of Fresnoite $Ba_2TiSi_2O_8$ Single Crystals," J. Appl. Phys., 116 [4] 044106 (2014).   DOI
18 M. Kimura, K. Doi, S. Nanamatsu, and T. Kawamura, "A New Piezoelectric Crystal: $Ba_2Ge_2TiO_8$," Appl. Phys. Lett., 23 [10] 531-32 (1973).   DOI
19 H. Takeda, T. Kuze, T. Nishida, K. Uchiyama, and T. Shiosaki, "Growth and Piezoelectric Properties of Al-Substituted Langasite-Type $La_3Nb_{0.5}Ga_{5.5}O_{14}$ Crystals," Mater. Res. Bull., 43 [7] 1731-36 (2008).   DOI
20 T. Fukuda, P. Takeda, K. Shimamura, H. Kawanaka, M. Kumatoriya, S. Murakami, J. Sato, and M. Sato, "Growth of New Langasite Single Crystals for Piezoelectric Applications," pp. 315-19 in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics, 1998.
21 J. Bohm, R. B. Heimann, M. Hengst, R. Roewer, and J. Schindler, "Czochralski Growth and Characterization of Piezoelectric Single Crystals with Langasite Structure: $La_3Ga_5SiO_{14}$ (LGS), $La_3Ga_{5.5}Nb_{0.5}O_{14}$ (LGN), and $La_3Ga_{5.5}Ta_{0.5}O_{14}$ (LGT): Part I," J. Cryst. Growth, 204 [1-2] 128-36 (1999).   DOI
22 B. H. T. Chai, A. N. P. Bustamante, and M. C. Chou, "A new class of ordered langasite structure compounds," pp. 163-68 in Proceeding of IEEE/EIA International Frequency Control Symposium, 2000.
23 H. Yamauchi, "Surface-Acoustic-Wave Characteristics on Fresnoite ($Ba_2Si_2TiO_8$) Single Crystal," J. Appl. Phys., 49 [12] 6162-64 (1978).   DOI
24 G. W. Hunter, J. D. Wrbanek, R. S. Okojie, P. G. Neudeck, G. C. Fralick, L. Chen, J. Xu, and G. M. Beheim, "Devel opment and Application of High Temperature Sensors and Electronics for Propulsion Applications," article 622209 in Proceeding of SPIE, Vol. 6222, 2006.
25 A. Bandyopadhyay, R. K. Panda, T. F. McNulty, F. Mohammadi, S. C. Danforth, and A. Safari, "Piezoelectric Ceramics and Composites via Rapid Prototyping Techniques," Rapid Prototyping J., 4 [1] 37-49 (1998).   DOI
26 L. E. Cross, "Relaxor Ferroelectrics," Ferroelectrics, 76 [1] 241-67 (1987).   DOI
27 D. Parks, S. Zhang, and B. Tittmann, "High-Temperature (> $500^{\circ}C$) Ultrasonic Transducers: an Experimental Comparison among Three Candidate Piezoelectric Materials," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 [5] 1010-15 (2013).   DOI
28 W. J. Fleming, "Overview of Automotive Sensors," IEEE Sens J. 1 [4] 296-308 (2001).   DOI
29 V. Korman, G. W. Hunter, J. D. Wrbanek, R. S. Okojie, P. G. Neudeck, G. C. Fralick, L. Chen, J. Xu, and G. M. Beheim, "Development and Application of High-Temperature Sensors and Electronics for Propulsion Applications," Proc. SPIE, 6222 622209 (2006).
30 S. Zhang, Y. Fei, B. H. Chai, E. Frantz, D. W. Snyder, X. Jiang, and T. R. Shrout, "Characterization of Piezoelectric Single Crystal $YCa_4O(BO_3)_3$ for High Temperature Applications," Appl. Phys. Lett., 92 [20] 202905 (2008).   DOI
31 R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher, "The Changing Automotive Environment: High-Temperature Electronics," IEEE Trans. Electron. Packag. Manuf., 27 [3] 164-76 (2004).   DOI
32 R. Kazys, A. Voleisis, and B. Voleisiene, "High Temperature Ultrasonic Transducers: Review," Ultragarsas, 63 [2] 7-17 (2008).
33 S. Zhang, F. Yu, R. Xia, Y. Fei, E. Frantz, X. Zhao, D. Yuan, B. H. T. Chai, D. Snyder, and T. R. Shrout, "High Temperature ReCOB Piezocrystals: Recent Developments," J. Cryst. Growth, 318 [1] 884-89 (2011).   DOI
34 J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
35 R. Zuo, J. Rodel, R. Chen, and L. Li, "Sintering and Electrical Properties of Lead-Free $Na_{0.5}K_{0.5}NbO_3$ Piezoelectric Ceramics," J. Am. Ceram. Soc., 89 [6] 2010-15 (2006).   DOI
36 S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and Jurgen Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_[0.5}TiO_3-BaTiO_3-K_{0.5}Na_{0.5}NbO_3$. II. Temperature Dependent Properties," J. Appl. Phys., 103 [3] 034108 (2008).   DOI
37 X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.-J. Kleebe, and J. Rodel, "Effect of Uniaxial Stress on Ferroelectric Behavior of $(Bi_{1/2}Na_{1/2})TiO_3$-Based Lead-Free Piezoelectric Ceramics," J. Appl. Phys., 106 [4] 044107 (2009).   DOI
38 H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rodel, and M. Hoffman, "Electric-Field-Induced Strain Mechanisms in Lead-Free 94%$(Bi_{1/2}Na_{1/2})TiO_3-6%BaTiO_3$," Appl. Phys. Lett., 98 [8] 082901 (2011).   DOI
39 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015).   DOI
40 J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang, and J. Rodel, "Requirements for the Transfer of Lead-Free Piezoceramics into Application," J. Materiomics, 4 [1] 13-26 (2018).   DOI
41 S. Zhang, R. Xia, and T. R. Shrout, "Modified $(K_{0.5}Na_{0.5})NbO_3$ Based Lead-Free Piezoelectrics with Broad Temperature Usage Range," Appl. Phys. Lett., 91 [13] 132913 (2007).   DOI
42 M. E. Manley, D. L. Abernathy, R. Sahul, D. E. Parshall, J. W. Lynn, A. D. Christianson, P. J. Stonaha, E. D. Specht, and J. D. Budai, "Giant Electromechanical Coupling of Relaxor Ferroelectrics Controlled by Polar Nanoregion Vibrations," Sci. Adv., 2 [9] e1501814 (2016).   DOI
43 K. Kim, S. Zhang, W. Huang, F. Yu, and X. Jiang, "$YCa_4O(BO_3)_3$ (YCOB) High Temperature Vibration Sensor," J. Appl. Phys., 109 [12] 126103 (2011).   DOI
44 F. Li, S. Zhang, D. Damjanovic, L. Q. Chen, and T. R. Shrout, "Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics," Adv. Funct. Mater., 28 1801504 (2018).   DOI
45 D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, "Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors," J. Appl. Phys., 68 [6] 2916-21 (1990).   DOI
46 A. A. Bokov, B. J. Rodriguez, X. Zhao, J.-H. Ko, S. Jesse, X. Long, W. Qu, T. H. Kim, J. D. Budai, A. N. Morozovska, S. Kojima, X. Tan, S. V. Kalinin, and Z.-G. Ye, "Compositional Disorder, Polar Nanoregions and Dipole Dynamics in $Pb(Mg_{1/3}Nb_{2/3})O_3$-Based Relaxor Ferroelectrics," Z. Kristallogr., 226 [2] 99-107 (2011).   DOI
47 G. Xu, Z. Zhong, Y. Bing, Z. G. Ye, and G. Shirane, "Electric-Field-Induced Redistribution of Polar Nano-Regions in a Relaxor Ferroelectric," Nat. Mater., 5 [2] 134-40 (2006).   DOI
48 W. He, Q. Li, Q. Yan, N. Luo, Y. Zhang, X. Chu, and D. Shen, "Temperature-Dependent Phase Transition in Orthorhombic [011]c $Pb(Mg_{1/3}Nb_{2/3})O_3$-0.35$PbTiO_3$ Single Crystal," Crystals, 4 [3] 262-72 (2014).   DOI
49 J. Luo and S. Zhang, "Advances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals," Crystals, 4 [3] 306-30 (2014).   DOI
50 D. Carka, J. Gallagher, and C. Lynch, "Phase Energy Determined from Stress and Electric-Field-Induced Phase Transformations in [011]C Cut 0.24PIN-PMN-PT Single Crystals," Crystals, 4 [3] 377-89 (2014).   DOI
51 F. Li, S. Zhang, D. Lin, J. Luo, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Electromechanical Properties of $Pb(In_{12}Nb_{12})O_3-Pb(Mg_{13}Nb_{23})O_3-PbTiO_3$ Single Crystals," J. Appl. Phys., 109 [1] 014108 (2011).   DOI
52 J. Tian and P. Han, "Growth and Characterization on PMN-PT-Based Single Crystals," Crystals, 4 [3] 331-41 (2014).   DOI
53 X. Jiang, J. Kim, and K. Kim, "Relaxor-PT Single Crystal Piezoelectric Sensors," Crystals, 4 [3] 351-76 (2014).   DOI
54 S. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, "Characterization of High $T_C $$Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals Fabricated by Solid State Crystal Growth," Appl. Phys. Lett., 90 [23] 232911 (2007).   DOI
55 S. Zhang, H. Kong, R. Xia, Y. Zheng, J. Xin, and T. R. Shrout, "Growth and High-Temperature Electromechanical Properties of (and Al) Piezoelectric Crystals," Solid State Commun., 150 [9-10] 435-38 (2010).   DOI
56 H. Fritze, M. Schulz, H. Seh, and H. Tuller, "Sensor Application-Related Defect Chemistry and Electromechanical Properties of Langasite," Solid State Ionics, 177 [26-32] 2313-16 (2006).   DOI
57 F. Yu, X. Zhao, L. Pan, F. Li, D. Yuan, and S. Zhang, "Investigation of Zero Temperature Compensated Cuts in Langasite-Type Piezocrystals for High Temperature Applications," J. Phys. D: Appl. Phys., 43[16] 165402 (2010).   DOI
58 J. Xin, Y. Zheng, H. Kong, H. Chen, X. Tu, and E. Shi, "Growth of a New Ordered Langasite Structure Crystal $Ca_3TaAl_3Si_2O_{14}$," Cryst. Growth Des., 8 [8] 2617-19 (2008).   DOI
59 K. Xiong, Y. Zheng, X. Tu, S. Zhang, H. Kong, and E. Shi, "Growth and High Temperature Properties of $Ca_3Ta(Al_{0.9}Ga_{0.1})_3Si_2O_{14}$ Crystals with Ordered Langasite Structure," J. Cryst. Growth, 401 820-23 (2014).   DOI
60 S. Zhang, E. Frantz, R. Xia, W. Everson, J. Randi, D. W. Snyder, and T. R. Shrout, "Gadolinium Calcium Oxyborate Piezoelectric Single Crystals for Ultrahigh Temperature (> $1000^{\circ}C$) Applications," J. Appl. Phys., 104 [8] 084103 (2008).   DOI
61 H. Shimizu, T. Nishida, H. Takeda, and T. Shiosaki, "Dielectric, Elastic and Piezoelectric Properties of $RCa_4O(BO_3)_3$ (R=Rare-Earth Elements) Crystals with Monoclinic Structure of Point Group m," J. Cryst. Growth, 311 [3] 916-20 (2009).   DOI
62 S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997).   DOI
63 J. Xu, S. Fan, B. Lu, J. Tong, and A. Zhang, "Seeded Growth of Relaxor Ferroelectric Single Crystals $Pb[(Zn_{1/3}Nb_{2/3})_[0.91}Ti_{0.09}]O_3$ by the Vertical Bridgman Method," Jpn. J. Appl. Phys., 41 [Part 1, No. 11B] 7000-2 (2002).   DOI
64 J. Xu, X. Wu, J. Tong, M. Shi, and G. Qian, "Two-Step Bridgman Growth of 0.91$Pb(Zn_{1/3}Nb_{2/3})O_3$-0.09$PbTiO_3$ Single Crystals," J. Cryst. Growth, 280 [1-2] 107-12 (2005).   DOI
65 K. K. Rajan, Y. S. Ng, J. Zhang, and L. C. Lim, "[001]-Poled $Pb(Zn_{1/3}Nb_{2/3})O_3$-(6-7)%$PbTiO_3k_{31}$-Actuators: Effects of Initial Domain Structure, Length Orientation, and Poling Conditions," Appl. Phys. Lett., 85 [18] 4136-38 (2004).   DOI
66 M. A. Carpenter, J. F. Bryson, G. Catalan, S. J. Zhang, and N. J. Donnelly, "Elastic and Anelastic Relaxations in the Relaxor Ferroelectric $Pb(Mg_{1/3}Nb_{2/3})O_3$: II. Strain-Order Parameter Coupling and Dynamic Softening Mechanisms," J. Phys. Condens. Matter., 24 [4] 045902 (2012).   DOI
67 J. Macutkevic, J. Banys, A. Bussmann-Holder, and A. R. Bishop, "Origin of Polar Nanoregions in Relaxor Ferroelectrics: Nonlinearity, Discrete Breather Formation, and Charge Transfer," Phys. Rev., B, 83 [18] 184301 (2011).   DOI
68 S. Zhang, F. Li, W. Jiang, J. Luo, R. J. Meyer, Jr., W. Cao, and T. R. Shrout, "Face Shear Piezoelectric Properties of Relaxor-$PbTiO_3$ Single Crystals," Appl. Phys. Lett., 98 [18] 182903 (2011).   DOI
69 S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Electromechanical Properties of PMN-PZT Piezoelectric Single Crystals Near Morphotropic Phase Boundary Compositions," J. Am. Ceram. Soc., 90 [12] 3859-62 (2007).
70 A. Amin, H.-Y. Lee, and B. Kelly, "High Transition Temperature Lead Magnesium Niobate-Lead Zirconate Titanate Single Crystals," Appl. Phys. Lett., 90 [24] 242912 (2007).   DOI
71 X. Huo, S. Zhang, G. Liu, R. Zhang, J. Luo, R. Sahul, W. Cao, and T. R. Shrout, "Complete Set of Elastic, Dielectric, and Piezoelectric Constants of [011]C Poled Rhombohedral $Pb(In_{0.5}Nb_{0.5})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$:Mn Single Crystals," J. Appl. Phys., 113 [7] 074106 (2013).   DOI
72 M. Budimir, D. Damjanovic, and N. Setter, "Piezoelectric Anisotropy-Phase Transition Relations in Perovskite Single Crystals," J. Appl. Phys., 94 [10] 6753-61 (2003).   DOI
73 D. Damjanovic, M. Budimir, M. Davis, and N. Setter, "Piezoelectric Anisotropy: Enhanced Piezoelectric Response along Nonpolar Directions in Perovskite Crystals," J. Mater. Sci., 41 [1] 65-76 (2006).   DOI
74 M. Davis, M. Budimir, D. Damjanovic, and N. Setter, "Rotator and Extender Ferroelectrics: Importance of the Shear Coefficient to the Piezoelectric Properties of Domain-Engineered Crystals and Ceramics," J. Appl. Phys., 101 [5] 054112 (2007).   DOI
75 M. Davis, D. Damjanovic, and N. Setter, "Correlation between Dielectric Anisotropy and Positive or Zero Transverse Piezoelectric Coefficients in Perovskite Ferroelectric Single Crystals," Appl. Phys. Lett., 87 [10] 102904 (2005).   DOI
76 X. Wang, F. Tian, C. Zhao, J. Wu, Y. Liu, B. Dkhil, M. Zhang, Z. Gao, and X. Lou, "Giant Electrocaloric Effect in Lead-Free $Ba_{0.94}Ca_{0.06}Ti_[1-x}Sn_xO_3$ Ceramics with Tunable Curie Temperature," Appl. Phys. Lett., 107 [25] 252905 (2015).   DOI
77 B. V. Mill and Y. V. Pisarevsky, "Langasite-type materials: from discovery to present state," pp. 133-44 in Proceeding of IEEE/EIA International Frequency Control Symposium, 2000.
78 J. Wu, D. Xiao, and J. Zhu, "Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries," Chem. Rev., 115 [7] 2559-95 (2015).   DOI
79 K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, and J. Zhu, "Superior Piezoelectric Properties in Potassium-Sodium Niobate Lead-Free Ceramics," Adv. Mater., 28 [38] 8519-23 (2016).   DOI
80 X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, and X. Lou, "Giant $d_{33}$ in $(K,Na)(Nb,Sb)O_3-(Bi,Na,K,Li)ZrO_3$ Based Lead-Free Piezoelectrics with High $T_c$," Appl. Phys. Lett., 103 [5] 052906 (2013).   DOI
81 M.-H. Zhang, H. C. Thong, Y. X. Lu, W. Sun, J.-F. Li, and K. Wang, "$(K,Na)NbO_3$-Based Lead-Free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy," J. Korean Ceram. Soc., 54 [4] 261-71 (2017).   DOI
82 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012).   DOI
83 R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, "Tuning the Orthorhombic-Rhombohedral Phase Transition Temperature in Sodium Potassium Niobate by Incorporating Barium Zirconate," Phys. Status Solidi RRL, 3 [5] 142-44 (2009).   DOI
84 A. Amin, L. E. Cross, and H.-Y. Lee, "Evolution of a Nonspontaneous, High Piezoelectric Coupling Symmetry Axis in Relaxor-Ferroelectric Single Crystals," J. Appl. Phys., 101 [11] 114103 (2007).   DOI
85 S.-J. L. Kang, J.-H. Park, S.-Y. Ko, H.-Y. Lee, and D. J. Green, "Solid-State Conversion of Single Crystals: The Principle and the State-of-the-Art," J. Am. Ceram. Soc., 98 [2] 347-60 (2015).   DOI
86 H.-Y. Lee, J.-S. Kim, and D.-Y. Kim, "Fabrication of $BaTiO_3$ Single Crystals Using Secondary Abnormal Grain Growth," J. Eur. Ceram. Soc., 20 [10] 1595-97 (2000).   DOI
87 M.-S. Kim, J. G. Fisher, S.-J. L. Kang, and H.-Y. Lee, "Grain Growth Control and Solid-State Crystal Growth by $Li2_O/PbO$ Addition and Dislocation Introduction in the PMN-35PT System," J. Am. Ceram. Soc., 89 [4] 1237-43 (2006).   DOI
88 K.-S. Moon, D. Rout, H.-Y. Lee, and S.-J. L. Kang, "Solid State Growth of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals and Their Enhanced Piezoelectric Properties," J. Cryst. Growth, 317 [1] 28-31 (2011).   DOI
89 J. Yang, F. Zhang, Q. Yang, Z. Liu, Y. Li, Y. Liu, and Q. Zhang, "Large Piezoelectric Properties in KNN-Based Lead-Free Single Crystals Grown by a Seed-Free Solid-State Crystal Growth Method," Appl. Phys. Lett., 108 [18] 182904 (2016).   DOI
90 H. Onozuka, Y. Kitanaka, Y. Noguchi, and M. Miyayama, "Crystal Growth and Characterization of $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Single Crystals Obtained by a Top-Seeded Solution Growth Method under High-Pressure Oxygen Atmosphere," Jpn. J. Appl. Phys., 50 [9] 09NE7 (2011).
91 S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, "Giant Strain in Lead-Free $(Bi_{0.5}Na_{0.5})TiO_3$-Based Single Crystals," Appl. Phys. Lett., 92 [18] 182905 (2008).   DOI
92 D. Lin, S. Zhang, C. Cai, and W. Liu, "Domain Size Engineering in 0.5%$MnO_2-(K_{0.5}Na_{0.5})NbO_3$ Lead Free Piezoelectric Crystals," J. Appl. Phys., 117 [7] 074103 (2015).   DOI
93 D. C. Lagoudas, X. Jiang, P. W. Rehrig, W. S. Hackenberger, and T. R. Shrout, "Large-Stroke Low-Profile Single-Crystal Piezoelectric Actuators," 5053 436 (2003).
94 S. Dong, L. Yan, D. Viehland, X. Jiang, and W. S. Hackenberger, "A Piezoelectric Single Crystal Traveling Wave Step Motor for Low-Temperature Application," Appl. Phys. Lett., 92 [15] 153504 (2008).   DOI
95 X. Jiang, "Single Crystal Piezoelectric Actuators for Tunable HTS Filters," AIP Conf. Proc., 823 [1] 928-35 (2006).
96 R. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Bando, T. Sekiya, and M. Itoh, "Phase Diagram of the $(Na_{0.5}K_{0.5})NbO_3-ATiO_3$ Solid Solution," Ferroelectrics, 336 [1] 39-46 (2011).   DOI
97 M. Izumi, K. Yamamoto, M. Suzuki, Y. Noguchi, and M. Miyayama, "Large Electric-Field-Induced Strain in $Bi_{0.5}Na_{0.5}TiO_3-Bi_{0.5}K_{0.5}TiO_3$ Solid Solution Single Crystals," Appl. Phys. Lett., 93 [24] 242903 (2008).   DOI
98 X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, and W. Cao, "$(K,Na,Li)(Nb,Ta)O_3$:Mn Lead-Free Single Crystal with High Piezoelectric Properties," J. Am. Ceram. Soc., 98 [6] 1829-35 (2015).   DOI
99 X. Huo, L. Zheng, S. Zhang, R. Zhang, G. Liu, R. Wang, B. Yang, W. Cao, and T. R. Shrout, "Growth and Properties of Li, Ta Modified $(K,Na)NbO_3$ Lead-Free Piezoelectric Single Crystals," Phys. Status Solidi Rapid Res. Lett., 8 [1] 86-90 (2014).   DOI
100 X. Zhao, J. Wang, Z. Peng, K. H. Chew, H. L. W. Chan, C. L. Choy, and H. Luo, "Electric Field Effect on Polarization and Depolarization Behavior of the <001>-Oriented Relaxor-Based $0.7Pb(Mg_{1/3}Nb_{2/3})O_3$-0.3$PbTiO_3$ Single Crystal," Phys. B, 339 [2-3] 68-73 (2003).   DOI
101 F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T. R. Shrout, and L.-Q. Chen, "The Origin of Ultrahigh Piezoelectricity in Relaxor-Ferroelectric Solid Solution Crystals," Nat. Commun., 7 13807 (2016).   DOI
102 F. Li, S. Zhang, Z. Xu, and L.-Q. Chen, "The Contributions of Polar Nanoregions to the Dielectric and Piezoelectric Responses in Domain-Engineered Relaxor-$PbTiO_3$ Crystals," Adv. Funct. Mater., 27 [18] 1700310 (2017).   DOI
103 F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T. R. Shrout, and S. Zhang, "Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design," Nat. Mater., 17 [4] 349-54 (2018).   DOI
104 A. J. Bell, "A Classical Mechanics Model for the Interpretation of Piezoelectric Property Data," J. Appl. Phys., 118 [22] 224103 (2015).   DOI
105 T. Richter, C. Schuh, E. Suvaci, and R. Moos, "Single Crystal Growth in PMN-PT and PMN-PZT," J. Mater. Sci., 44 [7] 1757-63 (2009).   DOI
106 Z. Xia and Q. Li, "Growth and Characterization of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Single Crystals with High Rhombohedral/Tetragonal Phase Transition Temperature," Solid State Commun., 145 [1-2] 38-42 (2008).   DOI
107 S. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, "Characterization of Mn-Modified $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals for High Power Broad Bandwidth Transducers," Appl Phys Lett., 93 [12] 122908 (2008).   DOI
108 A. J. Bell, "Phenomenologically Derived Electric Field-Temperature Phase Diagrams and Piezoelectric Coefficients for Single Crystal Barium Titanate under Fields along Different Axes," J. Appl. Phys., 89 [7] 3907-14 (2001).   DOI
109 B. Jaffe, R. Roth, and S. Marzullo, "Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate," J. Res. Natl. Bur. Stand., 55 [5] 239-54 (1955).   DOI
110 S. Trolier-McKinstry, S. Zhang, A. J. Bell, and X. Tan, "High-Performance Piezoelectric Crystals, Ceramics, and Films," Annu. Rev. Mater. Res., 48 [1] 191-217 (2018).   DOI
111 H. Jaffe and D. A. Berlincourt, "Piezoelectric Transducer Materials," Proc. IEEE., 53 [10] 1372-86 (1965).   DOI
112 S. E. Park and T. R. Shrout, "Relaxor Based Ferroelectric Single Crystals for Electro-Mechanical Actuators," Mater. Res. Innovations, 1 [1] 20-5 (1997).   DOI
113 S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-$PbTiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301 (2012).   DOI
114 E. Sun and W. Cao, "Relaxor-Based Ferroelectric Single Crystals: Growth, Domain Engineering, Characterization and Applications," Prog. Mater. Sci., 65 124-210 (2014).   DOI
115 S. Zhang, F. Yu, and D. J. Green, "Piezoelectric Materials for High Temperature Sensors," J. Am. Ceram. Soc., 94 [10] 3153-70 (2011).   DOI
116 N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylorc, T. Yamada, and S. Streiffer, "Ferroelectric Thin Films: Review of Materials, Properties, and Applications," J. Appl. Phys., 100 [5] 051606 (2006).   DOI
117 A. Biancoli, C. M. Fancher, J. L. Jones, and D. Damjanovic, "Breaking of Macroscopic Centric Symmetry in Paraelectric Phases of Ferroelectric Materials and Implications for Flexoelectricity," Nat. Mater., 14 [2] 224-29 (2015).   DOI
118 W. A. Smith and B. A. Auld, "Modeling 1-3 Composite Piezoelectrics: Thickness-Mode Oscillations," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38 [1] 40-7 (1991).   DOI
119 S. Zhang, F. Li, J. Luo, R. Sahul, and T. R. Shrout, "Relaxor-$PbTiO_3$ Single Crystals for Various Applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 [8] 1572-80 (2013).   DOI
120 S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, "Advantages and Challenges of Relaxor-$PbTiO_3$ Ferroelectric Crystals for Electroacoustic Transducers- A Review," Prog. Mater. Sci., 68 1-66 (2015).   DOI
121 D. Damjanovic, "Piezoelectric Properties of Perovskite Ferroelectrics: Unsolved Problems and Future Research," Annales de Chimie Science des Materiaux, 26 [1] 99-106 (2001).   DOI
122 D. Damjanovic, "Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics," J. Am. Ceram. Soc., 88 [10] 2663-76 (2005).   DOI
123 M. Ahart, A. Asthagiri, Z.-G. Ye, P. Dera, H.-K. Mao, R. E. Cohen, and R. J. Hemley, "Brillouin Scattering and Molecular Dynamics Study of the Elastic Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3$," Phys. Rev. B, 75 [14] 144410 (2007).   DOI
124 J. B. Lim, S. Zhang, H.-Y. Lee, and T. R. Shrout, "Solid State Crystal Growth of $BiScO_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Electroceram., 29 [2] 139-43 (2012).   DOI
125 J.-H. Park, H.-Y. Lee, and S.-J. L. Kang, "Solid-State Conversion of $(Na_{1/2}Bi_{1/2})TiO_3-BaTiO_3-(K_{1/2}Na_{1/2})NbO_3$ Single Crystals and Their Piezoelectric Properties," Appl. Phys. Lett., 104 [22] 222910 (2014).   DOI
126 J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, "Dielectric and Piezoelectric Properties of "Lead-Free" Piezoelectric Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ Single Crystals," J. Korean Ceram. Soc., 53 [2] 171-77 (2016).   DOI
127 H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-Modified PMNPZT $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$ Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 150-57 (2017).   DOI
128 Y. Dai, X. Zhang, and G. Zhou, "Phase Transitional Behavior in $K_{0.5}Na_{0.5}NbO_3-LiTaO_3$ Ceramics," Appl. Phys. Lett., 90 [26] 262903 (2007).   DOI
129 A. J. Bell, "Factors Influencing the Piezoelectric Behaviour of PZT and other "Morphotropic Phase Boundary" Ferroelectrics," J. Mater. Sci., 41 [1] 13-25 (2006).   DOI
130 T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 113-26 (2007).   DOI
131 W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009).   DOI
132 M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti Jr., and J. Rodel1, "$BaTiO_3$-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives," Appl. Phys. Rev., 4 [4] 041305 (2017).   DOI
133 D. Stamopoulos, M. Zeibekis, and S. J. Zhang, "Modulation of the Properties of Thin Ferromagnetic Films with an Externally Applied Electric Field in Ferromagnetic/Piezoelectric/Ferromagnetic Hybrids," J. Appl. Phys., 114 [13] 134309 (2013).   DOI
134 D. Stamopoulos, M. Zeibekis, and S. J. Zhang, "Control of Superconductivity by Means of Electric-Field-Induced Strain in Superconductor/Piezoelectric Hybrids," J. Appl. Phys., 123 [2] 023903 (2018).   DOI
135 P. Han, W. Yan, J. Tian, X. Huang, and H. Pan, "Cut Directions for the Optimization of Piezoelectric Coefficients of Lead Magnesium Niobate-Lead Titanate Ferroelectric Crystals," Appl. Phys. Lett., 86 [5] 052902 (2005).   DOI
136 S. Zhang, W. Jiang, R. J. Meyer, F. Li, J. Luo, and W. Cao, "Measurements of Face Shear Properties in Relaxor-$PbTiO_3$ Single Crystals," J. Appl. Phys., 110 [6] 064106 (2011).   DOI
137 H. Zu, H. Wu, and Q. M. Wang, "High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63 [3] 486-505 (2016).   DOI
138 F. Yu, S. Zhang, X. Zhao, D. Yuan, C.-M. Wang, and T. R. Shrout, "Characterization of Neodymium Calcium Oxyborate Piezoelectric Crystal with Monoclinic Phase," Cryst. Growth Des., 10 [4] 1871-77 (2010).   DOI
139 F. Yu, S. Zhang, X. Zhao, D. Yuan, L. Qin, Q. M. Wang, and T. R. Shrout, "Dielectric and Electromechanical Properties of Rare Earth Calcium Oxyborate Piezoelectric Crystals at High Temperatures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [4] 868-73 (2011).   DOI
140 J. A. Johnson, K. Kim, S. Zhang, D. Wu, and X. Jiang, "High-Temperature Acoustic Emission Sensing Tests Using a Yttrium Calcium Oxyborate Sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61 [5] 805-14 (2014).   DOI
141 S. Zhang, X. Jiang, M. Lapsley, P. Moses, and T. R. Shrout, "Piezoelectric Accelerometers for Ultrahigh Temperature Application," Appl. Phys. Lett., 96 [1] 013506 (2010).   DOI
142 D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hua, and X. Tao, "Bulk Growth, Structure, and Characterization of the New Monoclinic $TbCa_4O(BO_3)_3$ Crystal," CrystEngComm, 16 [19] 4008-15 (2014).   DOI
143 V. G. Smotrakov, V. V. Eremkin, A. E. Panich, L. A. Shilkina, and V. A. Aleshin, "Optimization of Ceramic Fillers for 0-3 Piezoelectric Composites," Inorg. Mater., 40 [7] 780-83 (2004).   DOI
144 S. J. Krumbein, "Metallic Electromigration Phenomena," IEEE Trans. Compon., Hybrids, Manuf. Technol., 11 [1] 5-15 (1988).   DOI
145 F. Li, S. Zhang, Z. Li, and Z. Xu, "Recent Development on Relaxor-$PbTiO_3$ Single Crystals: The Origin of High Piezoelectric Response," Prog. Phys., 32 178-98 (2012).
146 C. H. Sherman, "Underwater Sound - A Review I. Underwater Sound Transducers," IEEE Trans. Sonics Ultrason., 22 [5] 281-90 (1975).   DOI
147 X. Jiang, K. Kim, S. Zhang, J. Johnson, and G. Salazar, "High-Temperature Piezoelectric Sensing," Sensors, 14 [1] 144-69 (2013).   DOI
148 S. J. Zhang, F. Li, and F. P. Yu, "Piezoelectric Materials for Cryogenic and High-Temperature Applications," pp. 59-93 in Structural Health Monitoring in Aerospace Structures, Ed. F. G. Yuan, Woodhead Publishing Limited, Cambridge, 2016.
149 L. Cross and R. Newnham, History of Ferroelectrics, Ceramics and Civilation: High Technology Ceramics-Past, Present and Future; Vol. 3, pp. 289-305, The American Ceramic Society, 1987.
150 J. Valasek, "Properties of Rochelle Salt Related to the Piezo-Electric Effect," Phys. Rev., 20 [6] 639-64 (1922).   DOI
151 D. Berlincourt and H. Jaffe, "Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate," Phys. Rev., 111 [1] 143-48 (1958).   DOI
152 C. Chen, X. Jiang, Y. Li, F. Wang, Q. Zhang, and H. Luo, "Growth and Electrical Properties of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Lead-Free Single Crystal with Morphotropic Phase Boundary Composition," J. Appl. Phys., 108 [12] 124106 (2010).   DOI
153 Q. Zhang, X. Li, R. Sun, X. Wu, B. Ren, X. Zhao, and H. Luo, "Electric Properties of Mn Doped 0.95$Na_{0.5}Bi_{0.5}TiO_3-0.05BaTiO_3$ Crystal after Different Annealing Processes," J. Cryst. Growth, 318 [1] 870-73 (2011).   DOI
154 N. P. Sherlock, L. M. Garten, S. J. Zhang, T. R. Shrout, and R. J. Meyer, "Nonlinear Dielectric Response in Piezoelectric Materials for Underwater Transducers," J. Appl. Phys., 112 [12] 124108 (2012).   DOI
155 H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [$Pb(Mg_{1/3}Nb_{2/3})O_3$-29$PbTiO_3$] Single Crystals," J. Korean Ceram. Soc., 55 [3] 290-98 (2018).   DOI
156 J. Callerame, R. H. Tancrell, and D. T. Wilson, "Transmitters and Receivers for Medical Ultrasonics," pp. 407-11, in Proceeding of IEEE Ultrasonics Symposium, 1979.
157 Z. Zhang, F. Li, R. Chen, T. Zhang, X. Cao, S. Zhang, Thomas R. Shrout, Hairong Zheng, K. Kirk Shung, Mark S. Humayun, Weibao Qiu, and Qifa Zhou, "High-Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic With Ultrahigh Clamped Dielectric Permittivity," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65 [2] 223-30 (2018).   DOI
158 P. Ci, G. Liu, Z. Chen, S. Zhang, and S. Dong, "High-Order Face-Shear Modes of Relaxor-$PbTiO_3$ Crystals for Piezoelectric Motor Applications," Appl. Phys. Lett., 104 [24] 242911 (2014).   DOI
159 S. Goljahi, J. Gallagher, S. J. Zhang, J. Luo, R. Sahul, W. Hackenberger, and C. S. Lynch, "A Relaxor Ferroelectric Single Crystal Cut Resulting in Large $d_{312}$ and Zero $d_{311}$ for a Shear Mode Accelerometer and Related Applications," Smart Mater. Struct., 21 [5] 055005 (2012).   DOI
160 K. Kim, S. Zhang, and X. Jiang, "Surface Load Induced Electrical Impedance Shift in Relaxor-$PbTiO_3$ Crystal Piezoelectric Resonators," Appl. Phys. Lett., 100 [25] 253501 (2012).   DOI
161 K. Kim, S. Zhang, and X. Jiang, "Surface Acoustic Load Sensing Using a Face-Shear PIN-PMN-PT Single-Crystal Resonator," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 [11] 2548-54 (2012).   DOI
162 M. Jiang, C. A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, G. Cheng, X. Liu, J. Zhang, and Y. Li, "Seed-Free Solid-State Growth of Large Lead-Free Piezoelectric Single Crystals: $(Na_{1/2}K_{1/2})NbO_3$," J. Am. Ceram. Soc., 98 [10] 2988-96 (2015).   DOI
163 X. Long and Z.-G. Ye, "Top-Seeded Solution Growth and Characterization of Rhombohedral PMN-30PT Piezoelectric Single Crystals," Acta Mater., 55 [19] 6507-12 (2007).   DOI
164 P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, and X. Zhang, "Ultrahigh Piezoelectric Properties in Textured $(K,Na)NbO_3$ -Based Lead-Free Ceramics," Adv. Mater., 30 [8] 1705171 (2018).   DOI
165 J. Hao, C. Ye, B. Shen, and J. Zhai, "Enhanced Electrostricitive Properties and Thermal Endurance of Textured $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3-(K_{0.5}Na_{0.5})NbO_3$ Ceramics," J. Appl. Phys., 114 [5] 054101 (2013).   DOI
166 C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016).   DOI
167 C. W. Ahn, H. Y. Lee, G. Han, S. Zhang, S. Y. Choi, J. J. Choi, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park, B.-D. Hahn, and J. Ryu, "Self-Growth of Centimeter-Scale Single Crystals by Normal Sintering Process in Modified Potassium Sodium Niobate Ceramics," Sci. Rep., 5 17656 (2015).   DOI
168 Y.-Q. Lu and Y.-X. Li, "A Review on Lead-Free Piezoelectric Ceramics Studies in China," J. Adv. Dielectr., 01 [03] 269-88 (2011).   DOI
169 J. Yang, Z. Fu, Q. Yang, Y. Li, and Y. Liu, "Effect of Seeds and Sintering Additives on $(K,Na,Li)NbO_3$ Lead-Free Single Crystals Grown by a Solid-State Crystal Growth Method," J. Ceram. Soc. Jpn., 124 [4] 365-69 (2016).   DOI
170 J. Yao, Y. Yang, N. Monsegue, Y. Li, J. Li, Q. Zhang, W. Ge, H. Luo, and D. Viehland, "Effect of Mn Substituents on the Domain and Local Structures of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals near a Morphotropic Phase Boundary," Appl. Phys. Lett., 98 [13] 132903 (2011).   DOI
171 X. Li, C. Chen, H. Deng, H. Zhang, D. Lin, X. Zhao, and H. Luo, "The Growth and Properties of Lead-Free Ferroelectric Single Crystals," Crystals, 5 [2] 172-92 (2015).   DOI
172 M. Ogino, Y. Noguchi, Y. Kitanaka, M. Miyayama, C. Moriyoshi, and Y. Kuroiwa, "Polarization Rotation and Monoclinic Distortion in Ferroelectric $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Single Crystals under Electric Fields," Crystals, 4 [3] 273-95 (2014).   DOI
173 T. Chu, C. He, H. Tailor, and X. Long, "Preparation and Characterization of Lead-Free $(K_{0.5}Na_{0.5})NbO_3-LiNbO_3$ and $(K_{0.5}Na_{0.5})NbO_3-LiTaO_3$ Ferroelectric Single Crystals," Crystals, 4 [3] 296-305 (2014).   DOI
174 J. Yao, N. Monsegue, M. Murayama, W. Leng, W. T. Reynolds, Q. Zhang, H. Luo, J. Li, W. Ge, and D. Viehland, "Role of Coexisting Tetragonal Regions in the Rhombohedral Phase of $Na_{0.5}Bi_{0.5}TiO_3-xat.%BaTiO_3$ Crystals on Enhanced Piezoelectric Properties on Approaching the Morphotropic Phase Boundary," Appl. Phys. Lett., 100 [1] 012901 (2012).   DOI
175 S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, and T. R. Shrout, "Characterization of High Temperature Piezoelectric Crystals with an Ordered Langasite Structure," J. Appl. Phys., 105 [11] 114107 (2009).   DOI
176 H. Y. Guo, C. Lei, and Z.-G. Ye, "Re-Entrant Type Relaxor Behavior in (1-x)$BaTiO_{3-x}BiScO_3$ Solid Solution," Appl. Phys. Lett., 92 [17] 172901 (2008).   DOI
177 M. Saidul Islam, S. Tsukada, W. Chen, Z.-G. Ye, and S. Kojima, "Role of Dynamic Polar Nanoregions in Heterovalent Perovskite Relaxor: Inelastic Light Scattering Study of Ferroelectric Ti Rich $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Appl. Phys., 112 [11] 114106 (2012).   DOI
178 H. Fritze, "High-Temperature Piezoelectric Crystals and Devices," J. Electroceram., 26 [1-4] 122-61 (2011).   DOI
179 W. M. Kriven, J. W. Palko, S. Sinogeikin, J. D. Bass, A. Sayir, G. Brunauer, H. Boysen, F. Frey, and J. Schneider, "High Temperature Single Crystal Properties of Mullite," J. Eur. Ceram. Soc., 19 [13-14] 2529-41 (1999).   DOI
180 B. R. Tittmann and M. Aslan, "Ultrasonic Sensors for High Temperature Applications," Jpn. J. Appl. Phys., 38 [Part 1, No. 5B] 3011-13 (1999).   DOI
181 S. Zhang, L. Laurent, S. Rhee, C. A. Randall, and T. R. Shrout, "Shear-Mode Piezoelectric Properties of $Pb(Yb_{1/2}Nb_{1/2})O_3-PbTiO_3$ Single Crystals," Appl. Phys. Lett., 81 [5] 892-94 (2002).   DOI
182 J. Yang, Q. Yang, Y. Li, and Y. Liu, "Growth Mechanism and Enhanced Electrical Properties of $K_{0.5}Na_{0.5}NbO_3$ -Based Lead-Free Piezoelectric Single Crystals Grown by a Solid-State Crystal Growth Method," J. Eur. Ceram. Soc., 36 [3] 541-50 (2016).   DOI
183 A. A. Bokov and Z.-G. Ye. "Reentrant Phenomena in Relaxors," pp. 729-64 in Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, Volume I & II, Ed. by M. Alguero, J. M. Gregg, L. Mitoseriu, John Wiley & Sons, Chichester, 2016.
184 M. J. Cabral, S. Zhang, E. C. Dickey, and J. M. LeBeau, "Gradient Chemical Order in the Relaxor $Pb(Mg_{1/3}Nb_{2/3})O_3$," Appl. Phys. Lett., 112 [8] 082901 (2018).   DOI
185 T. R. Shrout and J. Fielding, "Relaxor Ferroelectric Materials," pp. 711-20 in Proceedings of IEEE Symposium on Ultrasonics, 1990.
186 Y. H. Bing and Z. G. Ye, "Effects of Chemical Compositions on the Growth of Relaxor Ferroelectric $Pb(Sc_{1/2}Nb_{1/2})_{1-x}Ti_xO_3$ Single Crystals," J. Cryst. Growth, 250 [1-2] 118-25 (2003).   DOI
187 N. Yasuda, H. Ohwa, M. Kume, Y. Hosono, Y. Yamashita, S. Ishino, H. Terauchi, M. Iwata, and Y. Ishibashi, "Crystal Growth and Dielectric Properties of Solid Solutions of $Pb(Yb_{1/2}Nb_{1/2})O_3-PbTiO_3$ with a High Curie Temperature near a Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 40 [Part 1, No. 9B] 5664-67 (2001).   DOI
188 S. Trolier-McKinstry, N. Bassiri Gharb, and D. Damjanovic, "Piezoelectric Nonlinearity due to Motion of $180^{\circ}$ Domain Walls in Ferroelectric Materials at Subcoercive Fields: A Dynamic Poling Model," Appl. Phys. Lett., 88 [20] 202901 (2006).   DOI
189 H. Takeda, M. Hagiwara, H. Noguchi, T. Hoshina, T. Takahashi, N. Kodama, and T. Tsurumi, "Calcium Aluminate Silicate $Ca_2Al_2SiO_7$ Single Crystal Applicable to Piezoelectric Sensors at High Temperature," Appl. Phys. Lett., 102 [24] 242907 (2013).   DOI
190 H. Fritze, H. L. Tuller, G. Borchardt, and T. Fukuda, "High-Temperature Properties of Langasite," pp. 65-70 in Proceedings of Material Research Symposium, Vol. 604, 2000.
191 F. Yu, S. Hou, X. Zhao, and S. Zhang, "High-Temperature Piezoelectric Crystals $ReCa_4O(BO_3)_3$: a Review," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61 [8] 1344-56 (2014).   DOI
192 T. Kim, J. Kim, R. Dalmau, R. Schlesser, E. Preble, and X. Jiang, "High-Temperature Electromechanical Characterization of AlN Single Crystals," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62 [10] 1880-87 (2015).   DOI
193 P. Krempl, G. Schleinzer, and W. Wallnofer, "Gallium Phosphate, $GaPO_4$: a New Piezoelectric Crystal Material for High-Temperature Sensorics," Sens. Actuators, A, 61 [1-3] 361-63 (1997).   DOI
194 Z.-Y. Shen, Y. Tang, S. Zhang, J. Luo, Y. Li, and T. R. Shrout, "Enhanced Piezoelectric Activity and Temperature Stability of [111]-Oriented Orthorhombic 0.68$Pb(Mg_{1/3}Nb_{2/3})O_3-0.32PbTiO_3$ Single Crystals by Domain Size Engineering," Scr. Mater., 72-73 17-20 (2014).   DOI
195 F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, "Critical Property in Relaxor-$PbTiO_3$ Single Crystals - Shear Piezoelectric Response," Adv. Funct. Mater., 21 [11] 2118-28 (2011).   DOI
196 F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Temperature Independent Shear Piezoelectric Response in Relaxor-$PbTiO_3$ Based Crystals," Appl. Phys. Lett., 97 [25] 252903 (2010).   DOI
197 G. L. Messing, S. Poterala, Y. Chang, T. Frueh, E. R. Kupp, B. H. Watson, R. L. Walton, M. J. Brova, A.-K. Hofer, R. Bermejo, and R. J. Meyer, "Texture-Engineered Ceramics -Property Enhancements through Crystallographic Tailoring," J. Mater. Res., 32 [17] 3219-41 (2017).   DOI
198 D. Damjanovic, "Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics," Rep. Prog. Phys., 61 [9] 1267-324 (1998).   DOI
199 S. Trolier-McKinstry and P. Muralt, "Thin Film Piezoelectrics for MEMS," J. Electroceram., 12 [1-2] 7-17 (2004).   DOI
200 G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, "Templated Grain Growth of Textured Piezoelectric Ceramics," Crit. Rev. Solid State Mater. Sci., 29 [2] 45-96 (2004).   DOI
201 A. J. Bell, "Multilayer Ceramic Processing," pp. 241-71 in Ferroelectric Ceramics. Ed. by N. Setter and E. L. Colla, Springer, London, 1993.
202 Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T. N. Jackson, and Q. Wang, "Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites," Nature, 523 [7562] 576-79 (2015).   DOI
203 E. C. Subbarao, "A Family of Ferroelectric Bismuth Compounds," J. Phys. Chem. Solids, 23 [6] 665-76 (1962).   DOI
204 G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999).   DOI
205 K. H. Hardtl, "Electrical and Mechanical Losses in Ferroelectric Ceramics," Ceram. Int., 8 [4] 121-27 (1982).   DOI
206 J. A. Gallego-Juarez, "Piezoelectric Ceramics and Ultrasonic Transducers," J. Phys. E: Sci. Instrum., 22 [10] 804-16 (1989).   DOI
207 N. P. Sherlock, S. Zhang, J. Luo, H.-Y. Lee, T. R. Shrout, and R. J. Meyer, "Large Signal Electromechanical Properties of Low Loss (1-x)$Pb(Mg_{1/3}Nb_{2/3})O_3$-x$PbTiO_3$ Single Crystals," J. Appl. Phys., 107 [7] 074108 (2010).   DOI
208 A. Bernal, S. Zhang, and N. Bassiri-Gharb, "Effects of Orientation and Composition on the Extrinsic Contributions to the Dielectric Response of Relaxor-Ferroelectric Single Crystals," Appl. Phys. Lett., 95 [14] 142911 (2009).   DOI
209 N. P. Sherlock and R. J. Meyer, "Large Signal Response and Harmonic Distortion in Piezoelectrics for SONAR Transducers," J. Electroceram., 28 [2-3] 202-7 (2012).   DOI
210 N. P. Sherlock and R. J. Meyer Jr., "Modified Single Crystals for High-Power Underwater Projectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 [6] 1285-91 (2012).   DOI
211 S. Zhang, N. P. Sherlock, R. J. Meyer, and T. R. Shrout, "Crystallographic Dependence of Loss in Domain Engineered Relaxor-PT Single Crystals," Appl. Phys. Lett., 94 [16] 162906 (2009).   DOI
212 G. Liu, S. Zhang, W. Jiang, and W. Cao, "Losses in Ferroelectric Materials," Mater. Sci. Eng., R, 89 1-48 (2015).   DOI
213 H. Jae Lee, S. Zhang, R. J. Meyer, Jr., N. P. Sherlock, and T. R. Shrout, "Characterization of Piezoelectric Ceramics and 1-3 Composites for High Power Transducers," Appl. Phys. Lett., 101 [3] 032902 (2012).   DOI
214 K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, "Loss Mechanisms and High Power Piezoelectrics," J. Mater. Sci., 41 [1] 217-28 (2006).   DOI
215 X. Jiang, "Cryogenic Actuators and Motors Using Single Crystal Piezoelectrics," AIP Conf. Proc., 823 [1] 1783-89 (2006).
216 S. Zhang and T. Shrout, "Relaxor-PT Single Crystals: Observations and Developments," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 [10] 2138-46 (2010).   DOI
217 F. Martin, H. J. M. ter Brake, L. Lebrun, S. Zhang, and T. Shrout, "Dielectric and Piezoelectric Activities in (1-x)$Pb(Mg_{1/3}Nb_{2/3})O_3$-x$PbTiO_3$ Single Crystals from 5 K to 300 K," J. Appl. Phys., 111 [10] 104108 (2012).   DOI
218 F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Piezoelectric Activity of Relaxor-$PbTiO_3$ based Single Crystals and Polycrystalline Ceramics at Cryogenic Temperatures: Intrinsic and Extrinsic Contributions," Appl. Phys. Lett., 96 [19] 192903 (2010).   DOI
219 J. B. Heaney, M. L. Mulvihill, L. G. Burriesci, M. E. Roche, J. L. Cavaco, R. J. Shawgo, Z. A. Chaudhry, and M. A. Ealey, "Cryogenic Deformable Mirror Technology Development," Proc. SPIE, 5172 60 (2003).
220 Q. M. Zhang, V. Bharti, and X. Zhao, "Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer," Science, 280 [5372] 2101-5 (1998).   DOI
221 R. E. Newnham, D. P. Skinner, and L. E. Cross, "Connectivity and Piezoelectric-Pyroelectric Composites," Mater. Res. Bull., 13 [5] 525-36 (1978).   DOI
222 R. E. Newnham, "Composite Electroceramics," Ferroelectrics, 68 [1] 1-32 (1986).   DOI
223 D. Pang, X. Long, and H. Tailor, "A Lead-Reduced Ferrolectric Solid Solution with High Curie Temperature: $BiScO_3-Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," Ceram. Int., 40 [8] 12953-59 (2014).   DOI
224 C. He, X. Li, Z. Wang, Y. Liu, D. Shen, T. Li, and X. Long, "Characterization of $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ Ferroelectric Crystals Grown by Top-Seeded Solution Growth Method," J. Alloys Compd., 539 17-20 (2012).   DOI
225 T. Li and X. Long, "High-Performance Ferroelectric Solid Solution Crystals: $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Am. Ceram. Soc., 97 [9] 2850-57 (2014).   DOI
226 M. Matsushita, Y. Tachi, and K. Echizenya, "Growth of 3-in Single Crystals of Piezoelectric $Pb[(Zn_{1/3}Nb_{2/3})_{0.91}Ti_{0.09}]O_3$ by the Supported Solution Bridgman Method," J. Cryst. Growth, 237-239 853-57 (2002).   DOI
227 J. Xu, J. Tong, M. Shi, A. Wu, and S. Fan, "Flux Bridgman growth of $Pb[(Zn_{1/3}Nb_{2/3})_{0.93}Ti_{0.07}]O_3$ Piezocrystals," J. Cryst. Growth, 253[1-4] 274-79 (2003).   DOI
228 L. C. Lim and K. K. Rajan, "High-Homogeneity High-Performance Flux-Grown $Pb(Zn_{1/3}Nb_{2/3})O_3$-(6-7)%$PbTiO_3$ Single Crystals," J. Cryst. Growth, 271 [3-4] 435-44 (2004).   DOI
229 H. Yan, H. Zhang, Z. Zhang, R. Ubic, and M. J. Reece, "B-Site Donor and Acceptor Doped Aurivillius Phase $Bi_3NbTiO_9$ Ceramics," J. Eur. Ceram. Soc., 26 [13] 2785-92 (2006).   DOI
230 R. E. Newnham, R. W. Wolfe, and J. F. Dorrian, "Structural Basis of Ferroelectricity in the Bismuth Titanate Family," Mater. Res. Bull., 6 [10] 1029-39 (1971).   DOI
231 S. Zhang, N. Kim, T. R. Shrout, M. Kimura, and A. Ando, "High Temperature Properties of Manganese Modified $CaBi_4Ti_4O_{15}$ Ferroelectric Ceramics," Solid State Commun., 140 [3-4] 154-58 (2006).   DOI
232 H. Hao, H. Liu, and S. Ouyang, "Structure and Ferroelectric Property of Nb-Doped $SrBi_4Ti_4O_{15}$ Ceramics," J. Electroceram., 22 [4] 357-62 (2007).   DOI
233 H. Jaffe, "Piezoelectric Ceramics," J. Am. Ceram. Soc., 41 [11] 494-98 (1958).   DOI
234 C.-M. Wang and J.-F. Wang, "Aurivillius Phase Potassium Bismuth Titanate: $K_{0.5}Bi_{4.5}Ti_4O_{15}$," J. Am. Ceram. Soc., 91 [3] 918-23 (2008).   DOI
235 A. Moure, A. Castro, and L. Pardo, "Aurivillius-Type Ceramics, a Class of High Temperature Piezoelectric Materials: Drawbacks, Advantages and Trends," Prog. Solid State Chem., 37 [1] 15-39 (2009).   DOI
236 H. Kimura, H. Zhao, R. Tanahashi, L. Guo, T. Jia, Q. Yao, and Z. Cheng, "Potential Advantage of Multiple Alkali Metal Doped $KNbO_3$ Single Crystals," Crystals, 4 [3] 190-208 (2014).   DOI
237 S. Zhang, L. Laurent, S. Liu, S. Rhee, C. A. Randall, and T. R. Shrout, "Piezoelectric Shear Coefficients of $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ Single Crystals," Jpn. J. Appl. Phys., 41 [Part 2, No. 10A] L1099-102 (2002).   DOI
238 I. Mateescu, F. Krispel, S. Georgescu, K. Scott, and E. Borca, "Comparative Study of the Mass-Loading Effect on Electrical Parameters of Gallium Phosphate, Quartz and Langasite Resonators," pp. 690-94 in Proceedings of IEEE International Frequency Control Symposium, 2007.
239 C. Caliendo and F. Castro, "Quasi-Linear Polarized Modes in Y-Rotated Piezoelectric $GaPO_4$ Plates," Crystals, 4 [3] 228-40 (2014).   DOI
240 M. Jin, J. Xu, M. Shi, X. Wu, and J. Tong, "Growth of High Performance Piezoelectric Crystal $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ Using PbO Flux," Ultrasonics, 46 [2] 129-32 (2007).   DOI
241 S. Zhang, L. Lebrun, S. Rhee, R. E. Eitel, C. A. Randall, and T. R. Shrout, "Crystal Growth and Characterization of New High Curie Temperature (1-x)$BiScO_3-xPbTiO_3$ Single Crystals," J. Cryst. Growth, 236 [1-3] 210-16 (2002).   DOI
242 N. Yasuda, M. Sakaguchi, Y. Itoh, H. Ohwa, Y. Yamashita, M. Iwata, and Y. Ishibashi, "Effect of Electric Fields on Domain Structure and Dielectric Properties of $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ near Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 42 [Part 1, No. 9B] 6205-8 (2003).   DOI
243 Y. Guo, H. Luo, T. He, and Z. Yin, "Peculiar Properties of a High Curie Temperature $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ Single Crystal Grown by the Modified Bridgman Technique," Solid State Commun., 123 [9] 417-20 (2002).   DOI
244 S. Zhang, C. A. Randall, and T. R. Shrout, "High Curie Temperature Piezocrystals in the $BiScO_3-PbTiO_3$ Perovskite System," Appl. Phys. Lett., 83 [15] 3150-52 (2003).   DOI
245 Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, "Growth of Single Crystals of High-Curie-Temperature $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ternary Systems near Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 42 [Part 1, No. 9A] 5681-86 (2003).   DOI
246 N. Yasuda, T. Fuwa, H. Ohwa, Y. Tachi, Y. Yamashita, K. Fujita, M. Iwata, H. Terauchi, and Y. Ishibashi, "Hierarchical Domain Structures in Relaxor $24Pb(In_{1/2}Nb_{1/2})O_3-46Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3$ near a Morphotropic Phase Boundary Composition Grown by Bridgman Method," Jpn. J. Appl. Phys., 50 [9S2] 09NC1 (2011).
247 S. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, "Characterization of $Pb(In_{1⁄2}Nb_{1⁄2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ferroelectric Crystal with Enhanced Phase Transition Temperatures," J. Appl. Phys., 104 [6] 064106 (2008).   DOI
248 M. Beaurain, P. Armand, D. Balitsky, P. Papet, and J. Detaint, "Physical Characterizations of ${\alpha}-GaPO_4$ Single Crystals Grown by the Flux Method," pp. 1077-81 in Proceedings of IEEE International Frequency Control Symposium, 2007.
249 P. Armand, A. Lignie, M. Beaurain, and P. Papet, "Flux-Grown Piezoelectric Materials: Application to ${\alpha}$-Quartz Analogues," Crystals, 4 [2] 168-89 (2014).   DOI
250 P. Armand, M. Beaurain, B. Ruffle, B. Menaert, D. Balitsky, S. Clement, and P. Papet, "Characterizations of Piezoelectric $GaPO_4$ Single Crystals Grown by the Flux Method," J. Cryst. Growth, 310 [7-9] 1455-59 (2008).   DOI
251 W. Soluch, R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A. Goodberlet, and J. F. Vetelino, "Elastic, Piezoelectric, and Dielectric Properties of the $BaLaGa_3O_7$ Crystal," J. Appl. Phys., 58 [6] 2285-87 (1985).   DOI
252 C. Shen, S. Zhang, W. Cao, H. Cong, H. Yu, J. Wang, and H. Zhang, "Thermal and Electromechanical Properties of Melilite-Type Piezoelectric Single Crystals," J. Appl. Phys., 117 [6] 064106 (2015).   DOI
253 C. Shen, H. Zhang, Y. Zhang, H. Xu, H. Yu, J. Wang, and S. Zhang, "Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type $Bi_{12}TiO_{20}$ and $Bi_{12}SiO_{20}$ Single Crystals," Crystals, 4 [2] 141-51 (2014).   DOI
254 T.-B. Xu, L. Tolliver, X. Jiang, and J. Su, "A Single Crystal Lead Magnesium Niobate-Lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator," Appl. Phys. Lett., 102 [4] 042906 (2013).   DOI
255 F. Yu, S. Zhang, X. Zhao, S. Guo, X. Duan, D. Yuan, and T. R. Shrout, "Investigation of the Dielectric and Piezoelectric Properties of Re$Ca_4O(BO_3)_3$ Crystals," J. Phys. D: Appl. Phys., 44 [13] 135405 (2011).   DOI
256 D. Damjanovic, "Hysteresis in Piezoelectric and Ferroelectric Materials," Sci. Hysteresis, 3 337-465 (2006).
257 K. Uchino, J. Zheng, Y. H. Chen, X. Du, S. Hirose, and S. Takahashi, "Loss Mechanisms in Piezoelectrics," pp. 25-31 in Proceeding Materials Research Society Symposium, Vol. 604, 2000.
258 T. Tsurumi, "Non-linear Piezoelectric and Dielectric Behaviors in Perovskite Ferroelectrics," J. Ceram. Soc. Jpn., 115 [1337] 17-22 (2007).   DOI
259 T. Tsurumi, Y.-B. Kil, K. Nagatoh, H. Kakemoto, S. Wada, and S. Takahashi, "Intrinsic Elastic, Dielectric, and Piezoelectric Losses in Lead Zirconate Titanate Ceramics Determined by an Immittance-Fitting Method," J. Am. Ceram. Soc., 85 [8] 1993-96 (2002).   DOI
260 A. Amin, E. McLaughlin, H. Robinson, and L. Ewart, "Mechanical and Thermal Transitions in Morphotropic PZN-PT and PMN-PT Single Crystals and their Implication for Sound Projectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 [6] 1090-95 (2007).   DOI
261 E. A. McLaughlin, T. Liu, and C. S. Lynch, "Relaxor Ferroelectric PMN-32%PT Crystals under Stress and Electric Field Loading: I-32 Mode Measurements," Acta Mater., 52 [13] 3849-57 (2004).   DOI
262 H. C. Robinson, "Large Signal Dielectric Losses in Electrostrictive Materials," Proc. SPIE, 3992 91-102 (2000).
263 S. Zhang, F. Li, J. Luo, R. Xia, W. Hackenberger, and T. Shrout, "Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals under Large Drive Field," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [2] 274-80 (2011).   DOI
264 C. Jie and R. Panda, "Review: Commercialization of Piezoelectric Single Crystals for Medical Imaging Applications," pp. 235-40, in Proceeding of IEEE Ultrasonics Symposium, 2005.
265 M. Beaurain, P. Armand, and P. Papet, "Synthesis and Characterization of ${\alpha}-GaPO_4$ Single Crystals Grown by the Flux Method," J. Cryst. Growth, 294 [2] 396-400 (2006).   DOI
266 C. Shen, S. Zhang, D. Wang, T. Xu, H. Yu, W. Cao, J. Wang, and H. Zhang, "Growth and Property Characterization of $CaNdGa_3O_7$ and $SrNdGa_3O_7 $Melilite Single Crystals," CrystEngComm, 17 [8] 1791-99 (2015).   DOI
267 F. Yu, Q. Lu, S. Zhang, H. Wang, X. Cheng, and X. Zhao, "High-Performance, High-Temperature Piezoelectric $BiB_3O_6$ Crystals," J. Mater. Chem. C, 3 [2] 329-38 (2015).   DOI
268 F. Chen, L. Kong, F. Yu, C. Wang, Q. Lu, S. Zhang, Y. Li, X. Duan, L. Qin, and X. Zhao, "Investigation of the Crystal Growth, Thickness and Radial Modes of ${\alpha}-BiB_3O_6$ Piezoelectric Crystals," CrystEngComm, 19 [3] 546-51 (2017).   DOI
269 H. Fritze, "High-Temperature Bulk Acoustic Wave Sensors," Meas. Sci. Technol., 22 [1] 012002 (2011).   DOI
270 E. Cross, "Materials Science: Lead-Free at Last," Nature, 432 [7013] 24-5 (2004).   DOI
271 H. T. Y. Saito, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004).   DOI
272 J. P. Lynch, K.-W. Wang, H. Sohn, S. Sherrit, W. Zimmer man, N. Takano, and L. Avellar, "Miniature Cryogenic Valves for a Titan Lake Sampling System," Proc. SPIE, 9061 90613J (2014).