Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.1.08

Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries  

Kim, Jongsoon (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
Kim, Hyungsub (Neutron Science Center, Korea Atomic Energy Research Institute (KAERI))
Kang, Kisuk (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University)
Publication Information
Abstract
Spinel $LiNi_{0.5}Mn_{1.5}O_4$ has received great attention as one of the most outstanding cathode materials for Li-ion batteries (LIBs) because of its high energy density resulting from the operating voltage of ~ 4.7 V (vs. $Li^+/Li$) based on the $Ni^{2+}/Ni^{4+}$ redox reaction. However, $LiNi_{0.5}Mn_{1.5}O_4$ is known to suffer from undesirable side reactions with the electrolyte at high voltage as well as Mn dissolution from the structure. These issues prevent the realization of the optimal electrochemical performance of $LiNi_{0.5}Mn_{1.5}O_4$. Extensive research has been conducted to overcome these issues. This review presents an overview of the various surface-modification methods available to improve the electrochemical properties of $LiNi_{0.5}Mn_{1.5}O_4$ and provides perspectives on further research aimed at the application of $LiNi_{0.5}Mn_{1.5}O_4$ as a cathode material in commercialized LIBs.
Keywords
Spinels; Batteries; Electrodes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. J. Luo, "Improvement of the Electrochemical Performance of Spinel $LiNi_{0.5}Mn_{1.5}O_4$ by Stabilization of the Electrode/Electrolyte Interfaces with the Electrolyte Additive," J. Alloys Compd., 730 23-30 (2018).   DOI
2 K. Y. Park, J. Hong, J. Kim, Y. U. Park, H. Kim, D. H. Seo, S. W. Kim, J. W. Choi, and K. Kang, "Factors that Affect the Phase Behavior of Multi-Component Olivine ($LiFe_xMn_yCo_{1-x-y}PO_4$; 0 < x, y < 1) in Lithium Rechargeable Batteries: One-Phase Reaction vs. Two-Phase Reaction," J. Electrochem. Soc., 160 [3] A444-48 (2013).   DOI
3 J. C. Kim, X. Li, B. Kang, and G. Ceder, "High-Rate Performance of a Mixed Olivine Cathode with Off-Stoichiometric Composition," Chem. Commun., 51 [68] 13279-82 (2015).   DOI
4 K. Amine, H. Yasuda, and M. Yamachi, "Olivine $LiCoPO_4$ as 4.8 V Electrode Material for Lithium Batteries," Electrochem. Solid State Lett., 3 [4] 178-79 (2000).   DOI
5 S. Nishimura, M. Nakamura, R. Natsui, and A. Yamada, "New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery," J. Am. Chem. Soc., 132 [39] 13596-97 (2010).   DOI
6 N. Furuta, S. Nishimura, P. Barpanda, and A. Yamada, "$Fe^{3+}/Fe^{2+}$ Redox Couple Approaching 4 V in $Li_{2-x}(Fe_{1-y}Mn_y)P_2O_7$ Pyrophosphate Cathodes," Chem. Mater., 24 [6] 1055-61 (2012).   DOI
7 J. Kim, B. Lee, H. Kim, H. Kim, and K. Kang, "Redesign of $Li_2MP_2O_7$ (M = Fe or Mn) by Tuning the Li Diffusion in Rechargeable Battery Electrodes," Chem. Mater., 28 [19] 6894-99 (2016).   DOI
8 J. C. Arrebola, A. Caballero, L. Hernan, and J. Morales, "Re-Examining the Effect of ZnO on Nanosized 5 V $LiNi_{0.5}Mn_{1.5}O_4$ Spinel: An Effective Procedure for Enhancing its Rate Capability at Room and High Temperatures," J. Power Sources, 195 [13] 4278-84 (2010).   DOI
9 H. D. Sun, B. B. Xia, W. W. Liu, G. Q. Fang, J. J. Wu, H. B. Wang, R. X. Zhang, S. Kaneko, J. W. Zheng, H. Y. Wang, and D. C. Li, "Significant Improvement in Performances of $LiNi_{0.5}Mn_{1.5}O_4$ through Surface Modification with High Ordered Al-Doped ZnO Electro-Conductive Layer," Appl. Surf. Sci., 331 309-14 (2015).
10 Y. Lee, J. Mun, D. W. Kim, J. K. Lee, and W. Choi, "Surface Modification of $LiNi_{0.5}Mn_{1.5}O_4$ Cathodes with $ZnAl_2O_4$ by a Sol-Gel Method for Lithium Ion Batteries," Electrochim. Acta, 115 326-31 (2014).   DOI
11 Y. Wang, Q. Peng, G. Yang, Z. Yang, L. C. Zhang, H. Long, Y. H. Huang, and P. X. Lu, "High-Stability 5 V Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Sputtered Thin Film Electrodes by Modifying with Aluminum Oxide," Electrochim. Acta, 136 450-56 (2014).   DOI
12 R. Amin and I. Belharouk, "Part I: Electronic and Ionic Transport Properties of the Ordered and Disordered $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Cathode," J. Power Sources, 348 311-17 (2017).   DOI
13 J. Li, S. F. Li, S. J. Xu, S. Huang, and J. X. Zhu, "Synthesis and Electrochemical Properties of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials with $Cr^{3+}$ and $F^-$ Composite Doping for Lithium-Ion Batteries," Nanoscale Res. Lett., 12 141 (2017).   DOI
14 Y. Luo, H. Y. Li, T. L. Lu, Y. X. Zhang, S. S. Mao, Z. Liu, W. Wen, J. Y. Xie, and L. Q. Yan, "Fluorine Gradient-Doped $LiNi_{0.5}Mn_{1.5}O_4$ Spinel with Improved High Voltage Stability for Li-Ion Batteries," Electrochim. Acta, 238 237-45 (2017).   DOI
15 R. Amin and I. Belharouak, "Part-II: Exchange Current Density and Ionic Diffusivity Studies on the Ordered and Disordered Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Power Sources, 348 318-25 (2017).   DOI
16 H. J. Wen, J. J. Zhang, J. C. Chai, J. Ma, L. P. Yue, T. T. Dong, X. Zang, Z. H. Liu, B. T. Zhang, and G. L. Cui, "Sustainable and Superior Heat-Resistant Alginate Nonwoven Separator of $LiNi_{0.5}Mn_{1.5}O_4$/Li Batteries Operated at $55^{\circ}C$," ACS Appl. Mater. Interfaces, 9 [4] 3694-701 (2017).   DOI
17 B. Aktekin, R. Younesi, W. Zipprich, C. Tengstedt, D. Brandell, and K. Edstrom, "The Effect of the Fluoroethylene Carbonate Additive in $LiNi_{0.5}Mn_{1.5}O_4-Li_4Ti_5O_{12}$ Lithium-Ion Cells," J. Electrochem. Soc., 164 [4] A942-48 (2017).   DOI
18 A. Yamada, Y. Kudo, and K. Y. Liu, "Reaction Mechanism of the Olivine-Type $Li_x(Mn_{0.6}Fe_{0.4})PO_4$ (0 ${\leq}$ x ${\leq}$ 1)," J. Electrochem. Soc., 148 [7] A747-54 (2001).   DOI
19 B. Nykvist and M. Nilsson, "Rapidly Falling Costs of Battery Packs for Electric Vehicles," Nat. Clim. Change, 5 [4] 329-32 (2015).   DOI
20 M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry," Science, 192 [4244] 1126-27 (1976).   DOI
21 G. Kobayashi, A. Yamada, S. Nishimura, R. Kanno, Y. Kobayashi, S. Seki, Y. Ohno, and H. Miyashiro, "Shift of Redox Potential and Kinetics in $Li_x(Mn_yFe_{1-y})PO_4$," J. Power Sources, 189 397-401 (2009).   DOI
22 P. Barpanda, J. N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, and J. M. Tarascon, "Structural, Transport, and Electrochemical Investigation of Novel $AMSO_4F$ (A = Na, Li; M = Fe, Co, Ni, Mn) Metal Fluorosulphates Prepared Using Low Temperature Synthesis Routes," Inorg. Chem., 49 [16] 7401-13 (2010).   DOI
23 D. Morgan, A. Van der Ven, and G. Ceder, "Li Conductivity in $Li_xMPO_4$ (M = Mn, Fe, Co, Ni) Olivine Materials," Electrochem. Solid State Lett., 7 [2] A30-2 (2004).   DOI
24 K. Kang and G. Ceder, "Factors that Affect Li Mobility in Layered Lithium Transition Metal Oxides," Phys. Rev. B, 74 [9] 094105 (2006).   DOI
25 A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, and T. Kamiyama, "Electrochemical, Magnetic, and Structural Investigation of the $Li_x(Mn_yFe_{1-y})PO_4$ Olivine Phases," Chem. Mater., 18 [3] 804-13 (2006).   DOI
26 S.-W. Kim, J. Kim, H. Gwon, and K. Kang, "Phase Stability Study of $Li_{1-x}MnPO_4$ (0 < x < 1) Cathode for Li Rechargeable Battery," J. Electrochem. Soc., 156 [8] A635-38 (2009).   DOI
27 Y. Zhang, C. S. Sun, and Z. Zhou, "Sol-Gel Preparation and Electrochemical Performances of $LiFe_{1/3}Mn_{1/3}Co_{1/3}PO_4/C$ Composites with Core-Shell Nanostructure," Electrochem. Commun., 11 [6] 1183-86 (2009).   DOI
28 J. W. Kim, D. H. Kim, D. Y. Oh, H. Lee, J. H. Kim, J. H. Lee, and Y. S. Jung, "Surface Chemistry of $LiNi_{0.5}Mn_{1.5}O_4$ Particles Coated by $Al_2O_3$ Using Atomic Layer Deposition for Lithium-Ion Batteries," J. Power Sources, 274 1254-62 (2015).   DOI
29 H. M. Cho, M. V. Chen, A. C. MacRae, and Y. S. Meng, "Effect of Surface Modification on Nano-Structured $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Materials," ACS Appl. Mater. Interfaces, 7 [30] 16231-39 (2015).   DOI
30 P. Barpanda, N. Recham, J. N. Chotard, K. Djellab, W. Walker, M. Armand, and J. M. Tarascon, "Structure and Electrochemical Properties of Novel Mixed $Li(Fe_{1-x}M_x)SO_4F$ (M = Co, Ni, Mn) Phases Fabricated by Low Temperature Ionothermal Synthesis," J. Mater. Chem., 20 [9] 1659-68 (2010).   DOI
31 R. Tripathi, T. N. Ramesh, B. L. Ellis, and L. F. Nazar, "Scalable Synthesis of Tavorite $LiFeSO_4F$ and $NaFeSO_4F$ Cathode Materials," Angew. Chem. Int. Ed., 49 [46] 8738-42 (2010).   DOI
32 M. Ati, B. C. Melot, G. Rousse, J. N. Chotard, P. Barpanda, and J. M. Tarascon, "Structural and Electrochemical Diversity in $LiFe_{1-{\delta}}Zn_{{\delta}}SO_4F$ Solid Solution: A Fe-Based 3.9 V Positive-Electrode Material," Angew. Chem. Int. Ed., 50 [45] 10574-77 (2011).   DOI
33 P. Barpanda, M. Ati, B. C. Melot, G. Rousse, J. N. Chotard, M. L. Doublet, M. T. Sougrati, S. A. Corr, J. C. Jumas, and J. M. Tarascon, "A 3.90 V Iron-Based Fluorosulphate Material for Lithium-Ion Batteries Crystallizing in the Triplite Structure," Nat. Mater., 10 [10] 772-79 (2011).   DOI
34 Y. Jeon, H. K. Noh, and H. K. Song, "A Lithium-Ion Battery Using Partially Lithiated Graphite Anode and Amphiredox $LiMn_2O_4$ Cathode," Sci. Rep., 7 [1] 14879 (2017).   DOI
35 R. Kun, P. Schlee, E. Pal, M. Busse, and T. Gesing, "Role of the Precursor Chemistry on the Phase Composition and Electrochemical Performance of Thin-Film $LiMn_2O_4$ Li-Ion Battery Cathodes Prepared by Spray Pyrolysis," J. Alloys Compd., 726 664-74 (2017).   DOI
36 G. Wang, W. C. Wen, S. H. Chen, R. Z. Yu, X. Y. Wang, and X. K. Yang, "Improving the Electrochemical Performances of Spherical $LiNi_{0.5}Mn_{1.5}O_4$ by $Fe_2O_3$ Surface Coating for Lithium-Ion Batteries," Electrochim. Acta, 212 791-99 (2016).   DOI
37 S. Tao, F. J. Kong, C. Q. Wu, X. Z. Su, T. Xiang, S. M. Chen, H. H. Hou, L. Zhang, Y. Fang, Z. C. Wang, W. S. Chu, B. Qian, and L. Song, "Nanoscale $TiO_2$ Membrane Coating Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material for Advanced Lithium-Ion Batteries," J. Alloys Compd., 705 413-19 (2017).   DOI
38 H. F. Deng, P. Nie, H. F. Luo, Y. Zhang, J. Wang, and X. G. Zhang, "Highly Enhanced Lithium Storage Capability of $LiNi_{0.5}Mn_{1.5}O_4$ by Coating with $Li_2TiO_3$ for Li-Ion Batteries," J. Mater. Chem. A, 2 [43] 18256-62 (2014).   DOI
39 G. Alva, C. Kim, T. H. Yi, J. B. Cook, L. P. Xu, G. M. Nolis, and J. Cabana, "Surface Chemistry Consequences of Mg-Based Coatings on $LiNi_{0.5}Mn_{1.5}O_4$ Electrode Materials upon Operation at High Voltage," J. Phy. Chem. C, 118 [20] 10596-605 (2014).   DOI
40 X. L. Li, W. Guo, Y. F. Liu, W. X. He, and Z. H. Xiao, "Spinel $LiNi_{0.5}Mn_{1.5}O_4$ as Superior Electrode Materials for Lithium-Ion Batteries: Ionic Liquid Assisted Synthesis and the Effect of CuO Coating," Electrochim. Acta, 116 278-83 (2014).   DOI
41 J. Kim, H. Kim, I. Park, Y. U. Park, J. K. Yoo, K. Y. Park, S. Lee, and K. Kang, "$LiFePO_4$ with an Alluaudite Crystal Structure for Lithium Ion Batteries," Energy Environ. Sci., 6 [3] 830-34 (2013).   DOI
42 T. Tanabe, T. Gunji, Y. Honma, K. Miyamoto, T. Tsuda, Y. Mochizuki, S. Kaneko, S. Ugawa, H. Lee, T. Ohsaka, and F. Matsumoto, "Preparation of Water-Resistant Surface Coated High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathode and Its Cathode Performance to Apply a Water-Based Hybrid Polymer Binder to Li-Ion Batteries," Electrochim. Acta, 224 429-38 (2017).   DOI
43 W. Wang, Z. Chen, J. Zhang, C. Dai, J. Li, and D. Ji, "A Comparative Structural and Electrochemical Study of Monoclinic $Li_3V_2(PO_4)_3/C$ and Rhombohedral $Li_{2.5}Na_{0.5}V_{(2-2x/3)}Ni_x(PO_4)_3/C$," Electrochim. Acta, 103 259-65 (2013).   DOI
44 J. Kim, S. W. Kim, H. Gwon, W. S. Yoon, and K. Kang, "Comparative Study of $Li(Li_{1/3}Ti_{5/3})O_4$ and $Li(Ni_{1/2-x}Li_{2x/3}Ti_{x/3})Ti_{3/2}O_4$ (x = 1/3) Anodes for Li Rechargeable Batteries," Electrochim. Acta, 54 [24] 5914-18 (2009).   DOI
45 Y. J. Lee, H. Yi, W. J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, and A. M. Belcher, "Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes," Science, 324 [5930] 1051-55 (2009).   DOI
46 H. Kim, S. Lee, Y. U. Park, H. Kim, J. Kim, S. Jeon, and K. Kang, "Neutron and X-ray Diffraction Study of Pyrophosphate-Based $Li_{2-x}MP_2O_7$ (M = Fe, Co) for Lithium Rechargeable Battery Electrodes," Chem. Mater., 23 [17] 3930-37 (2010).   DOI
47 J. Kim, D. H. Seo, S. W. Kim, Y. U. Park, and K. Kang, "Mn Based Olivine Electrode Material with High Power and Energy," Chem. Commun., 46 [8] 1305-7 (2010).   DOI
48 Y.-U. Park, J. Kim, H. Gwon, D. H. Seo, S. W. Kim, and K. Kang, "Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization," Chem. Mater., 22 2573 (2010).   DOI
49 J. Kim, J.-K. Yoo, Y. S. Jung, and K. Kang, "$Li_3V_2(PO_4)_3/Conducting$ Polymer as a High Power 4 V-Class Lithium Battery Electrode," Adv. Energy Mater., 3 [8] 1004-7 (2013).   DOI
50 L. B. Ben, H. L. Yu, B. Chen, Y. Y. Chen, Y. Gong, X. N. Yang, L. Gu, and X. J. Huang, "Unusual Spinel-to-Layered Transformation in $LiMn_2O_4$ Cathode Explained by Electrochemical and Thermal Stability Investigation," ACS Appl. Mater. Interfaces, 9 [40] 35463-75 (2017).   DOI
51 K. S. Reddy, B. Gangaja, S. V. Nair, and D. Santhanagopalan, "$Mn^{4+}$ Rich Surface Enabled Elevated Temperature and Full-Cell Cycling Performance of $LiMn_2O_4$ Cathode Material," Electrochim. Acta, 250 359-67 (2017).   DOI
52 C. Y. Tang, K. Leung, R. T. Haasch, and S. J. Dillon, "$LiMn_2O_4$ Surface Chemistry Evolution during Cycling Revealed by in Situ Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy," ACS Appl. Mater. Interfaces, 9 [39] 33968-78 (2017).   DOI
53 M. Y. Zhao, Z. Y. Ji, Y. G. Zhang, Z. Y. Guo, Y. Y. Zhao, J. Liu, and J. S. Yuan, "Study on Lithium Extraction from Brines Based on $LiMn_2O_4/Li_{1-x}Mn_2O_4$ by Electrochemical Method," Electrochim. Acta, 252 350-61 (2017).   DOI
54 D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, and Y. Cui, "Spinel $LiMn_2O_4$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett., 8 [11] 3948-52 (2008).   DOI
55 H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, "Ultrathin Spinel $LiMn_2O_4$ Nanowires as High Power Cathode Materials for Li-Ion Batteries," Nano Lett., 10 [10] 3852-56 (2010).   DOI
56 W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, and K. Zhu, "$LiMn_2O_4$ Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries," Nano Lett., 13 [5] 2036-40 (2013).   DOI
57 W. H. Jang, M. C. Kim, S. N. Lee, J. Y. Ahn, V. Aravindan, and Y. S. Lee, "Enhanced Elevated Temperature Performance of $LiFePO_4$ Modified Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Alloys Compd., 612 51-5 (2014).   DOI
58 M. J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, "High Performance $LiMn_2O_4$ Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries," Nano Lett., 14 [2] 993-99 (2014).   DOI
59 X. J. Yang, T. Yang, S. S. Liang, X. Wu, and H. P. Zhang, "Modification of $LiNi_{0.5}Mn_{1.5}O_4$ High Potential Cathode from the Inner Lattice to the Outer Surface with $Cr^{3+}$-Doping and $Li^+$-Conductor Coating," J. Mater. Chem. A, 2 [27] 10359-64 (2014).   DOI
60 Y. Liu, Z. P. Lu, C. F. Deng, J. J. Ding, Y. Xu, X. J. Lu, and G. Yang, "A Novel $LiCoPO_4$-Coated Core-Shell Structure for Spinel $LiNi_{0.5}Mn_{1.5}O_4$ as a High-Performance Cathode Material for Lithium-Ion Batteries," J. Mater. Chem. A, 5 [3] 996-1004 (2017).   DOI
61 B. W. Xiao, J. Liu, Q. Sun, B. Q. Wang, M. N. Banis, D. Zhao, Z. Q. Wang, R. Y. Li, X. Y. Cui, T. K. Sham, and X. L. Sun, "Unravelling the Role of Electrochemically Active $FePO_4$ Coating by Atomic Layer Deposition for Increased High-Voltage Stability of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material," Adv. Sci., 2 [5] 1500022 (2015).   DOI
62 T. F. Yi, Y. M. Li, X. Y. Li, J. J. Pan, Q. Zhang, and Y. R. Zhu, "Enhanced Electrochemical Property of $FePO_4$-Coated $LiNi_{0.5}Mn_{1.5}O_4$ as Cathode Materials for Li-Ion Battery," Sci. Bull., 62 [14] 1004-10 (2017).   DOI
63 M. Jiang, B. Key, Y. S. Meng, and C. P. Grey, "Electrochemical and Structural Study of the Layered, "Li-Excess" Lithium-Ion Battery Electrode Material $Li[Li_{1/9}Ni_{1/3}Mn_{5/9}]O_2$," Chem. Mater., 21 [13] 2733-45 (2009).   DOI
64 Y. L. Deng, J. R. Mou, H. L. Wu, N. Jiang, Q. J. Zheng, K. H. Lam, C. G. Xu, and D. M. Lin, "A Superior $Li_2SiO_3$-Composited $LiNi_{0.5}Mn_{1.5}O_4$ Cathode for High-Voltage and High-Performance Lithium-Ion Batteries," Electrochim. Acta, 235 19-31 (2017).
65 J. C. Deng, Y. L. Xu, L. Li, T. Y. Feng, and L. Li, "Microporous $LiAlSiO_4$ with High Ionic Conductivity Working as a Coating Material and Water Adsorbent for $LiNi_{0.5}Mn_{1.5}O_4$ Cathode," J. Mater. Chem. A, 4 [17] 6561-68 (2016).   DOI
66 M. M. Thackeray, "Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries," J. Electrochem. Soc., 142 [8] 2558-63 (1995).   DOI
67 J. Reed and G. Ceder, "Charge, Potential, and Phase Stability of Layered $Li(Ni_{0.5}Mn_{0.5})O_2$," Electrochem. Solid State Lett., 5 [7] A145-A48 (2002).   DOI
68 K. Kang, C. H. Chen, B. J. Hwang, and G. Ceder, "Synthesis, Electrochemical Properties, and Phase Stability of $Li_2NiO_2$ with the Immm Structure," Chem. Mater., 16 [13] 2685-90 (2004).   DOI
69 S. Jouanneau and J. R. Dahn, "Influence of LiF Additions on $LiNi_xCo_{1-2x}Mn_xO_2$ Materials-Sintering, Structure, and Lithium Insertion Properties," J. Electrochem. Soc., 151 [10] A1749-54 (2004).   DOI
70 B. J. Hwang, Y. W. Tsai, D. Carlier, and G. Ceder, "A Combined Computational/Experimental Study on $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$," Chem. Mater., 15 [19] 3676-82 (2003).   DOI
71 Y. K. Fan, J. M. Wang, Z. Tang, W. C. He, and J. Q. Zhang, "Effects of the Nanostructured $SiO_2$ Coating on the Performance of $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials for High-Voltage Li-Ion Batteries," Electrochim. Acta, 52 [11] 3870-75 (2007).   DOI
72 H. Gwon, S. W. Kim, Y. U. Park, J. Hong, G. Ceder, S. Jeon, and K. Kang, "Ion-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of $LiNi_{0.5}Mn_{0.5}O_2$," Inorg. Chem., 53 [15] 8083-87 (2014).   DOI
73 D. Hong, Y. F. Guo, H. X. Wang, J. G. Zhou, and H. T. Fang, "Mechanism for Improving the Cycle Performance of $LiNi_{0.5}Mn_{1.5}O_4$ by $RuO_2$ Surface Modification and Increasing Discharge Cut-Off Potentials," J. Mater. Chem. A, 3 [30] 15457-65 (2015).   DOI
74 S. H. Jung, D. H. Kim, P. Bruner, H. Lee, H. J. Hah, S. K. Kim, and Y. S. Jung, "Extremely Conductive $RuO_2$-Coated $LiNi_{0.5}Mn_{1.5}O_4$ for Lithium-Ion Batteries," Electrochim. Acta, 232 236-43 (2017).   DOI
75 W. K. Shin, Y. S. Lee, and D. W. Kim, "Study on the Cycling Performance of $LiNi_{0.5}Mn_{1.5}O_4$ Electrodes Modified by Reactive $SiO_2$ Nanoparticles," J. Mater. Chem. A, 2 [19] 6863-69 (2014).   DOI
76 W. K. Pang, H. F. Lin, V. K. Peterson, C. Z. Lu, C. E. Liu, S. C. Liao, and J. M. Chen, "Enhanced Rate-Capability and Cycling-Stability of 5 V $SiO_2$- and Polyimide-Coated Cation Ordered $LiNi_{0.5}Mn_{1.5}O_4$ Lithium-Ion Battery Positive Electrodes," J. Phy. Chem. C, 121 [7] 3680-89 (2017).   DOI
77 F. Yang, Q. G. Zhang, X. H. Hu, T. Y. Peng, and J. Q. Liu, "Preparation of Li-Rich Layered-Layered Type $xLi_2MnO_3{\cdot}(1-x)LiMnO_2$ Nanorods and its Electrochemical Performance as Cathode Material for Li-Ion Battery," J. Power Sources, 353 323-32 (2017).   DOI
78 A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144 [4] 1188-94 (1997).   DOI
79 A. Yamada, Y. Kudo, and K. Y. Liu, "Phase Diagram of $Li_x(Mn_yFe_{1-y})PO_4$ (0 ${\leq}$ x, y ${\leq}$ 1)," J. Electrochem. Soc., 148 [10] A1153-58 (2001).   DOI
80 J. H. Cho, J. H. Park, M. H. Lee, H. K. Song, and S. Y. Lee, "A Polymer Electrolyte-Skinned Active Material Strategy toward High-Voltage Lithium Ion Batteries: a Polyimide-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Spinel Cathode Material Case," Energy Environ. Sci., 5 [5] 7124-31 (2012).   DOI
81 Q. T. Zhang, J. T. Mei, X. M. Wang, F. L. Tang, W. F. Fan, and W. J. Lu, "High Performance Spinel $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material by Lithium Polyacrylate Coating for Lithium Ion Battery," Electrochim. Acta, 143 265-71 (2014).   DOI
82 Z. Qiao, O. Sha, Z. Y. Tang, J. Yan, S. L. Wang, H. B. Liu, Q. Xu, and Y. J. Su, "Surface Modification of $LiNi_{0.5}Mn_{1.5}O_4$ by $LiCoO_2/Co_3O_4$ Composite for Lithium-Ion Batteries," Mater. Lett., 87 176-79 (2012).   DOI
83 F. Ma, F. S. Geng, A. B. Yuan, and J. Q. Xu, "Facile Synthesis and Characterization of a $SnO_2$-Modified $LiNi_{0.5}Mn_{1.5}O_4$ High-Voltage Cathode Material with Superior Electrochemical Performance for Lithium Ion Batteries," Phys. Chem. Chem. Phys., 19 [15] 9983-91 (2017).   DOI
84 W. C. Wen, X. K. Yang, X. Y. Wang, and L. G. H. Shu, "Improved Electrochemical Performance of the Spherical $LiNi_{0.5}Mn_{1.5}O_4$ Particles Modified by Nano-$Y_2O_3$ Coating," J. Solid State Electrochem., 19 [4] 1235-46 (2015).   DOI
85 J. R. Mou, H. L. Wu, Y. L. Deng, L. Zhou, Q. J. Zheng, J. Liao, and D. M. Lin, "$BiFeO_3$-Coated Spinel $LiNi_{0.5}Mn_{1.5}O_4$ with Improved Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries," J. Solid State Electrochem., 21 [10] 2849-58 (2017).   DOI
86 B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar, "A Multifunctional 3.5 V Iron-Based Phosphate Cathode for Rechargeable Batteries," Nat. Mater., 6 [10] 749-53 (2007).   DOI
87 A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, and Y. Nishi, "Olivine-Type Cathodes: Achievements and Problems," J. Power Sources, 119-121 232-38 (2003).   DOI
88 D. Shanmukaraj and R. Murugan, "Synthesis and Characterization of $LiNi_yCo_{1-y}PO_4$ (y = 0 - 1) Cathode Materials for Lithium Secondary Batteries," Ionics, 10 [1-2] 88-92 (2004).   DOI
89 T. Maxisch and G. Ceder, "Elastic Properties of Olivine $Li_xFePO_4$ from First Principles," Phys. Rev. B, 73 [17] 4 (2006).
90 M. R. Roberts, G. Vitins, and J. R. Owen, "High-Throughput Studies of $Li_{1-x}Mg_{x/2}FePO_4$ and $LiFe_{1-y}Mg_yPO_4$ and the Effect of Carbon Coating," J. Power Sources, 179 [2] 754-62 (2008).   DOI
91 D. H. Seo, H. Gwon, S. W. Kim, J. Kim, and K. Kang, "Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study," Chem. Mater., 22 [2] 518-23 (2010).   DOI
92 X. Fang, M. Y. Ge, J. P. Rong, and C. W. Zhou, "Graphene-Oxide-Coated $LiNi_{0.5}Mn_{1.5}O_4$ as High Voltage Cathode for Lithium Ion Batteries with High Energy Density and Long Cycle Life," J. Mater. Chem. A, 1 [12] 4083-88 (2013).   DOI
93 X. W. Gao, Y. F. Deng, D. Wexler, G. H. Chen, S. L. Chou, H. K. Liu, Z. C. Shi, and J. Z. Wang, "Improving the Electrochemical Performance of the $LiNi_{0.5}Mn_{1.5}O_4$ Spinel by Polypyrrole Coating as a Cathode Material for the Lithium-Ion Battery," J. Mater. Chem. A, 3 [1] 404-11 (2015).   DOI
94 Z. L. Liu, P. Hu, J. Ma, B. S. Qin, Z. Y. Zhang, C. B. Mou, Y. Yao, and G. L. Cui, "Conformal Poly(Ethyl Alpha-Cyanoacrylate) Nano-Coating for Improving the Interface Stability of $LiNi_{0.5}Mn_{1.5}O_4$," Electrochim. Acta, 236 221-27 (2017).   DOI
95 T. Y. Yang, N. Q. Zhang, Y. Lang, and K. N. Sun, "Enhanced Rate Performance of Carbon-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material for Lithium Ion Batteries," Electrochim. Acta, 56 [11] 4058-64 (2011).   DOI
96 Y. Oumellal, A. Rougier, G. A. Nazri, J. M. Tarascon, and L. Aymard, "Metal Hydrides for Lithium-Ion Batteries," Nat. Mater., 7 [11] 916-21 (2008).   DOI
97 J. Chong, S. D. Xun, X. Y. Song, G. Liu, and V. S. Battaglia, "Surface Stabilized $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Materials with High-Rate Capability and Long Cycle Life for Lithium Ion Batteries," Nano Energy, 2 [2] 283-93 (2013).   DOI
98 H. Konishi, K. Suzuki, S. Taminato, K. Kim, Y. M. Zheng, S. Kim, J. Lim, M. Hirayama, J. Y. Son, Y. T. Cui, and R. Kanno, "Effect of Surface $Li_3PO_4$ Coating on $LiNi_{0.5}Mn_{1.5}O_4$ Epitaxial Thin Film Electrodes Synthesized by Pulsed Laser Deposition," J. Power Sources, 269 293-98 (2014).   DOI
99 M. Armand and J. M. Tarascon, "Building Better Batteries," Nature, 451 [7179] 652-57 (2008).   DOI
100 K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries," Science, 311 [5763] 977-80 (2006).   DOI
101 B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334 [6058] 928-35 (2011).   DOI
102 S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002).   DOI
103 G. Q. Liu, J. Y. Zhang, X. H. Zhang, Y. L. Du, K. Zhang, G. C. Li, H. Yu, C. W. Li, Z. Y. Li, Q. Sun, and L. Wen, "Study on Oxygen Deficiency in Spinel $LiNi_{0.5}Mn_{1.5}O_4$ and its Fe and Cr-Doped Compounds," J. Alloys Compd., 725 580-86 (2017).   DOI
104 J. Chong, S. D. Xun, J. P. Zhang, X. Y. Song, H. M. Xie, V. Battaglia, and R. S. Wang, "$Li_3PO_4$-Coated $LiNi_{0.5}Mn_{1.5}O_4$: A Stable High-Voltage Cathode Material for Lithium-Ion Batteries," Chem. Eur. J., 20 [24] 7479-85 (2014).   DOI
105 J. Chong, J. P. Zhang, H. M. Xie, X. Y. Song, G. Liu, V. Battaglia, S. D. Xun, and R. S. Wang, "High Performance $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Material with a Bi-Functional Coating for Lithium Ion Batteries," Rsc Adv., 6 [23] 19245-51 (2016).   DOI
106 H. X. Zhong, J. R. He, and L. Z. Zhang, "Better Cycle Stability and Rate Capability of High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Using Water Soluble Binder," Mater. Res. Bull., 93 194-200 (2017).
107 D. S. Lu, L. B. Yuan, Z. X. Chen, R. H. Zeng, and Y. P. Cai, "Co-Precipitation Preparation of $LiNi_{0.5}Mn_{1.5}O_4$ Hollow Hierarchical Microspheres with Superior Electrochemical Performance for 5 V Li-Ion Batteries," J. Alloys Compd., 730 509-15 (2018).   DOI
108 C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, "Lithium Deintercalation in $LiFePO_4$ Nanoparticles via a Domino-Cascade Model," Nat. Mater., 7 [8] 665-71 (2008).   DOI
109 J. Kim, Y. U. Park, D. H. Seo, J. Kim, S. W. Kim, and K. Kang, "Mg and Fe Co-Doped Mn Based Olivine Cathode Material for High Power Capability," J. Electrochem. Soc., 158 [3] A250-54 (2011).   DOI
110 J. Kim, K. Y. Park, I. Park, J. K. Yoo, J. Hong, and K. Kang, "Thermal Stability of Fe-Mn Binary Olivine Cathodes for Li Rechargeable Batteries," J. Mater. Chem., 22 [24] 11964-70 (2012).   DOI
111 P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, and C. Masquelier, "Room-Temperature Single-Phase Li Insertion/Extraction in Nanoscale $Li_xFePO_4$," Nat. Mater., 7 [9] 741-47 (2008).   DOI
112 S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, "Experimental Visualization of Lithium Diffusion in $Li_xFePO_4$," Nat. Mater., 7 [9] 707-11 (2008).   DOI
113 N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, and J. M. Tarascon, "A 3.6 V Lithium-Based Fluorosulphate Insertion Positive Electrode for Lithium-Ion Batteries," Nat. Mater., 9 [1] 68-74 (2010).   DOI
114 J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 [6861] 359-67 (2001).   DOI
115 H. L. Wang, Z. Q. Shi, J. W. Li, S. Yang, R. B. Ren, J. Y. Cui, J. L. Xiao, and B. Zhang, "Direct Carbon Coating at High Temperature on $LiNi_{0.5}Mn_{1.5}O_4$ Cathode: Unexpected Influence on Crystal Structure and Electrochemical Performances," J. Power Sources, 288 206-13 (2015).   DOI
116 T. Hwang, J. K. Lee, J. Mun, and W. Choi, "Surface Modified Carbon Nanotube Coating on High-Voltage $LiNi_{0.5}Mn_{1.5}O_4$ Cathodes for Lithium Ion Batteries," J. Power Sources, 322 40-8 (2016).   DOI
117 Y. K. Sun, K. J. Hong, J. Prakash, and K. Amine, "Electrochemical Performance of Nano-Sized ZnO-Coated $LiNi_{0.5}Mn_{1.5}O_4$ Spinel as 5 V Materials at Elevated Temperatures," Electrochem. Commun., 4 [4] 344-48 (2002).   DOI