Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.4.08

Low Pressure Joining of SiCf/SiC Composites Using Ti3AlC2 or Ti3SiC2 MAX Phase Tape  

Septiadi, Arifin (School of Materials Science and Engineering, Yeungnam University)
Fitriani, Pipit (School of Materials Science and Engineering, Yeungnam University)
Sharma, Amit Siddharth (School of Materials Science and Engineering, Yeungnam University)
Yoon, Dang-Hyok (School of Materials Science and Engineering, Yeungnam University)
Publication Information
Abstract
$SiC_f/SiC$ composites were joined using a $60{\mu}m-thick$ $Ti_3AlC_2$ or $Ti_3SiC_2$ MAX phase tape. The filler tape was inserted between the $SiC_f/SiC$ composites containing a 12 wt.% $Al_2O_3-Y_2O_3$ sintering additive. The joining was performed to a butt-joint configuration at $1600^{\circ}C$ or $1750^{\circ}C$ in an Ar atmosphere by applying 3.5 MPa using a hot press. Microstructural and phase analyses at the joining interface confirmed the decomposition of $Ti_3AlC_2$ and $Ti_3SiC_2$, indicating the joining by solid-state diffusion. The results showed sound joining interface without the presence of cracks. Joining strengths higher than 150 MPa could be obtained for the joints using $Ti_3AlC_2$ or $Ti_3SiC_2$ at $1750^{\circ}C$, while those for joined at $1600^{\circ}C$ decreased to 100 MPa approximately without the deformation of the joining bodies. The thickness of initial filler tape was reduced significantly after joining because of the decomposition and migration of MAX phase owing to the plasticity at high temperatures.
Keywords
$SiC_f/SiC$ composites; Joining; $Ti_3AlC_2$; $Ti_3SiC_2$; Tape;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 W. K. Pang, I. M. Low, B. H. O'Connor, A. J. Studer, V. K. Peterson, Z. M. Sun, and J. P. Palmquist, "Comparison of Thermal Stability in MAX 211 and 312 Phases," J. Phys. Conf. Ser., 251 [1] 12025 (2010).   DOI
2 M. Stumpf, T. Fey, and P. Greil, "Thermochemical Calculations of the Stability of $Ti_2AlC$ in Various Atmospheres," J. Ceram. Sci. Tech., 7 [3] 223-28 (2016).
3 S. Sen, M. Lake, N. Kroppen, P. Farber, J. Wilden, and P. Schaaf, "Self-Propagating Exothermic Reaction Analysis in Ti/Al Reactive Films Using Experiments and Computational Fluid Dynamics Simulation," Appl. Surf. Sci., 396 1490-98 (2017).   DOI
4 J. S. Byun, J. H. Shim, and Y. W. Cho, "Influence of Stearic Acid on Mechanochemical Reaction between Ti and BN Powders," J. Alloys Compd., 365 [1] 149-56 (2004).   DOI
5 P. Rogl, "Materials Science of Ternary Metal Boron Nitrides," Int. J. Inorg. Mater., 3 [3] 201-9 (2001).   DOI
6 N. F. Gao, Y. Miyamoto, and D. Zhang, "On Physical and Thermochemical Properties of High-Purity $Ti_3SiC_2$," Mater. Lett., 55 [1] 61-6 (2002).   DOI
7 M. W. Barsoum, "The Topotactic Transformation of $Ti_3SiC_2$ into a Partially Ordered Cubic Ti($C_{0.67}Si_{0.06}$) Phase by the Diffusion of Si into Molten Cryolite," J. Electrochem. Soc., 146 [10] 3919-23 (1999).   DOI
8 J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Hogberg, and L. Hultman, "Thermal Stability of $Ti_3SiC_2$ Thin Films," Acta Mater., 55 [4] 1479-88 (2007).   DOI
9 H. Zhang, X. H. Wang, P. Wan, X. Zhan, and Y. C. Zhou, "Insights into High-Temperature Uniaxial Compression Deformation Behavior of $Ti_3AlC_2$," J. Am. Ceram. Soc., 98 [10] 3332-37 (2015).   DOI
10 Z. F. Zhang, Z. M. Sun, and H. Hashimoto, "Deformation and Fracture Behavior of Ternary Compound $Ti_3SiC_2$ at 25 - $1300^{\circ}C$," Mater. Lett., 57 [7] 1295-99 (2003).   DOI
11 X. Yin, M. Li, J. Xu, J. Zhang, and Y. Zhou, "Direct Diffusion Bonding of $Ti_3SiC_2$ and $Ti_3AlC_2$," Mater. Res. Bull., 44 [6] 1379-84 (2009).   DOI
12 X. H. Yin, M. S. Li, T. P. Li, and Y. C. Zhou, "Diffusion Bonding of $Ti_3AlC_2$ Ceramic via a Si Interlayer," J. Mater. Sci., 42 [17] 7081-85 (2007).   DOI
13 H. Wang, H. Han, G. Yin, C. Y. Wang, Y. Y. Hou, J. Tang, J. X. Dai, C. L. Ren, W. Zhang, and P. Huai, "First-Principles Study of Vacancies in $Ti_3SiC_2$ and $Ti_3AlC_2$," Materials, 10 [2] 103 (2017).   DOI
14 R. Radhakrishnan, J. J. Williams, and M. Akinc, "Synthesis and High-Temperature Stability of $Ti_3SiC_2$," J. Alloys Compd., 285 [1] 85-8 (1999).   DOI
15 M. Singh, "A Reaction Forming Method for Joining of Silicon Carbide-Based Ceramics," Scr. Mater., 37 [8] 1151-54 (1997).   DOI
16 Y. Xu, X. Bai, X. Zha, Q. Huang, J. He, K. Luo, Y. Zhou, T. C. Germann, J. S. Francisco, and S. Du, "New Insight into the Helium-Induced Damage in MAX Phase $Ti_3AlC_2$ by First-Principles Studies," J. Chem. Phys., 143 [11] 114707 (2015).   DOI
17 Y. Zhou and Z. Sun, "Crystallographic Relations between $Ti_3SiC_2$ and TiC," Mater. Res. Innovations, 3 [5] 286-91 (2000).   DOI
18 R. M. German, P. Suri, and S. J. Park, "Review: Liquid Phase Sintering," J. Mater. Sci., 44 [1] 1-39 (2009).   DOI
19 E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, F. Guiberteau, M. Nygren, and A. L. Ortiz, "Sliding-Wear Resistance of Ultrafine-Grained SiC Densified by Spark Plasma Sintering with $3Y_2O_3+5Al_2O_3$ or $Y_3Al_5O_{12}$ Additives," Scr. Mater., 69 [8] 598-601 (2013).   DOI
20 X. Zhou, Y. H. Han, X. Shen, S. Du, J. Lee, and Q. Huang, "Fast Joining SiC Ceramics with $Ti_3SiC_2$ Tape Film by Electric Field-Assisted Sintering Technology," J. Nucl. Mater., 466 322-27 (2015).   DOI
21 G. Aiello, L. Giancarli, H. Golfier, and J. F. Maire, "Modeling of Mechanical Behavior and Design Criteria for $SiC_f$/SiC Composite Structures in Fusion Reactors," Fusion Eng. Des., 65 [1] 77-88 (2003).   DOI
22 A. Zhou, C. Wang, and Y. Hunag, "Synthesis and Mechanical Properties of $Ti_3AlC_2$ by Spark Plasma Sintering," Synthesis (Stuttg.), 8 3111-15 (2003).
23 Y. Zhou and Z. Sun, "Temperature Fluctuation/Hot Pressing Synthesis of $Ti_3SiC_2$," Simulation, 35 [17] 4343-46 (2000).
24 X. Xu, Y. Li, B. Mei, J. Zhu, H. Liu, and J. Qu, "Study on the Isothermal Oxidation Behavior in Air of $Ti_3AlC_2$ Sintered by Hot Pressing," Sci. China, Ser. E Technol. Sci., 49 [5] 513-20 (2006).   DOI
25 J. Xie, X. Wang, A. Li, F. Li, and Y. Zhou, "Corrosion Behavior of Selected $M_{n+1}AX_n$ Phases in Hot Concentrated HCl Solution: Effect of A Element and MX Layer," Corros. Sci., 60 129-35 (2012).   DOI
26 Y. Zhou, W. C. Zhou, F. Luo, and D. M. Zhu, "Effects of Dip-Coated BN Interphase on Mechanical Properties of $SiC_f$/SiC Composites Prepared by CVI Process," Trans. Nonferrous Met. Soc. China, 24 1400-6 (2014).   DOI
27 Y. K. Seo, Y. W. Kim, T. Nishimura, and W. S. Seo, "High-Temperature Strength of a Thermally Conductive Silicon Carbide Ceramic Sintered with Yttria and Scandia," J. Eur. Ceram. Soc., 36 [15] 3755-60 (2016).   DOI
28 F. Rodriguez-Rojas, A. L. Ortiz, F. Guiberteau, and M. Nygren, "Anomalous Oxidation Behaviour of Pressureless Liquid-Phase-Sintered SiC," J. Eur. Ceram. Soc., 31 [13] 2393-400 (2011).   DOI
29 V. M. Candelario, O. Borrero-Lopez, F. Guiberteau, R. Moreno, and A. L. Ortiz, "Sliding-Wear Resistance of Liquid-Phase-Sintered SiC Containing Graphite Nanodispersoids," J. Eur. Ceram. Soc., 34 [10] 2597-602 (2014).   DOI
30 L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371 [1] 329-77 (2007).   DOI
31 K. Yoshida, H. Akimoto, T. Yano, M. Kotani, and T. Ogasawara, "Mechanical Properties of Unidirectional and Crossply $SiC_f$/SiC Composites Using SiC Fibers with Carbon Interphase Formed by Electrophoretic Deposition Process," Prog. Nucl. Energy, 82 148-52 (2015).   DOI
32 J. Yin, S. H. Lee, L. Feng, Y. Zhu, X. Liu, and Z. Huang, "Fabrication of $SiC_f$/SiC Composites by Hybrid Techniques of Electrophoretic Deposition and Polymer Impregnation and Pyrolysis," Ceram. Int., 42 [14] 16431-35 (2016).   DOI
33 Y. Mu, W. Zhou, Y. Hu, D. Ding, F. Luo, and Y. Qing, "Enhanced Microwave Absorbing Properties of 2.5D $SiC_f$/SiC Composites Fabricated by a Modified Precursor Infiltration and Pyrolysis Process," J. Alloys Compd., 637 261-66 (2015).   DOI
34 R. Usukawa, H. Oda, and T. Ishikawa, "Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 610-14 (2016).   DOI
35 T. Ishikawa and H. Oda, "Structural Control Aiming for High-performance SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 615-21 (2016).   DOI
36 M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417 [1] 379-82 (2011).   DOI
37 S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, "Joining of ${\beta}$-SiC by Spark Plasma Sintering," J. Eur. Ceram. Soc., 34 [7] 1681-86 (2014).   DOI
38 Y. I. Jung, J. H. Park, H. G. Kim, D. J. Park, J. Y. Park, and W. J. Kim, "Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics," Nucl. Eng. Technol., 48 [4] 1009-14 (2016).   DOI
39 M. Ferraris, M. Salvo, V. Casalegno, A. Ciampichetti, F. Smeacetto, and M. Zucchetti, "Joining of Machined SiC/SiC Composites for Thermonuclear Fusion Reactors," J. Nucl. Mater., 375 [3] 410-15 (2008).   DOI
40 H. C. Jung, Y. H. Park, J. S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388 847-51 (2009).   DOI
41 C. A. Lewinsohn, M. Singh, T. Shibayama, T. Hinoki, M. Ando, Y. Katoh, and A. Kohyama, "Joining of Silicon Carbide Composites for Fusion Energy Applications," J. Nucl. Mater., 283-287 1258-61 (2000).   DOI
42 H. Dong, S. Li, Y. Teng, and W. Ma, "Joining of SiC Ceramic-Based Materials with Ternary Carbide $Ti_3SiC_2$," Mater. Sci. Eng. B, 176 [1] 60-4 (2011).   DOI
43 H. Dong, Y. Yu, X. Jin, X. Tian, W. He, and W. Ma, "Microstructure and Mechanical Properties of SiC-SiC Joints Joined by Spark Plasma Sintering," Ceram. Int., 42 [13] 14463-68 (2016).   DOI
44 E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, "MAX Phase Carbides and Nitrides: Properties for Future Nuclear Power Plant In-Core Applications and Neutron Transmutation Analysis," Nucl. Eng. Des., 244 17-24 (2012).   DOI
45 H. Lee, D. Kim, Y. S. Jeong, J. Y. Park, and W. Kim, "Formation of $Ti_3SiC_2$ Interphase of SiC Fiber by Electrophoretic Deposition Method," J. Korean Ceram. Soc., 53 [1] 87-92 (2016).   DOI
46 G. W. Bentzel, M. Ghidiu, B. Anasori, and M. W. Barsoum, "On the Interactions of $Ti_2AlC$, $Ti_3AlC_2$, $Ti_3SiC_2$ and $Cr_2AlC$ with Silicon Carbide and Pyrolytic Carbon at $1300^{\circ}C$," J. Eur. Ceram. Soc., 35 [15] 4107-14 (2015).   DOI
47 P. Yonathan, J. H. Lee, D. H. Yoon, W. J. Kim, and J. Y. Park, "Improvement of $SiC_f$/SiC Density by Slurry Infiltration and Tape Stacking," Mater. Res. Bull., 44 [11] 2116-22 (2009).   DOI
48 C. S. Park, F. Zheng, S. Salamone, and R. K. Bordia, "Processing of Composites in the Ti-Si-C System," J. Mater. Sci., 36 [13] 3313-22 (2001).   DOI
49 H. W. Yu, P. Fitriani, S. Lee, J. Y. Park, and D. H. Yoon, "Fabrication of the Tube-Shaped $SiC_f$/SiC by Hot Pressing," Ceram. Int., 41 [6] 7890-96 (2015).   DOI
50 G. Y. Gil and D. H. Yoon, "Densification of $SiC_f$/SiC Composites by Electrophoretic Infiltration Combined with Ultrasonication," J. Ceram. Process. Res., 12 [4] 371-75 (2011).