Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.4.07

The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics  

Kim, Jae (Powder and Ceramics Division, Korea Institute of Materials Science)
Ha, Jang-Hoon (Powder and Ceramics Division, Korea Institute of Materials Science)
Lee, Jongman (Powder and Ceramics Division, Korea Institute of Materials Science)
Song, In-Hyuck (Powder and Ceramics Division, Korea Institute of Materials Science)
Publication Information
Abstract
Porous alumina-based ceramics are of special interest due to their outstanding mechanical properties and their thermal and chemical stability. Nevertheless, the high electrical resistance of alumina-based ceramics, due to the generation of static electricity, leads to difficulty in applying a vacuum chuck in the semi-conductor process. Therefore, development of alumina-based ceramics for applications with vacuum chucks aims to have primary properties of low electrical resistance and high air permeability. In this study, we tailored the electrical resistance of porous alumina-based ceramics by adjusting the amount of $MnO_2$ (with $TiO_2$ fixed at an amount of 2 wt%) and by using coarse alumina powder for high air permeability. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimeter, capillary flow porosimetry, universal testing machine, X-ray diffraction and high-resistance meter.
Keywords
Alumina; Porous material; Permeability; Electrical resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 I. H. Song, J. H. Ha, M. J. Park, H. D. Kim, and Y. W. Kim, "Effects of Silicon Particle Size on Microstructure and Permeability of Silicon-bonded SiC Ceramics," J. Ceram. Soc. Jpn., 120 [1405] 370-74 (2012).   DOI
2 Y. Seki, S. Kose, T. Kodama, M. Kadota, T. Ogura, K. Tanimoto, and I. Matsubara, "Production Method of Porous Silica Compacts Containing Submicron Pores," J. Ceram. Soc. Jpn., 96 [1117] 920-24 (1988).   DOI
3 H. Erkalfa, Z. Misirli, and T. Baykara, "The Effect of $TiO_2$ and $MnO_2$ on Densification and Microstructural Development of Alumina," Ceram. Int., 24 [2] 81-90 (1998).   DOI
4 K. J. Jeong, Y. G. Park, Y. S. Lee, T. Y. Cho, and H. G. Chun, "A Study on the Fabrication and Characterization of Alumina Electrostatic Chuck for Silicon Wafer Processing (in Korean)," J. Sensor Sci. & Tech., 8 [6] 481-86 (1999).
5 I. H. Song, I. M. Kwon, H. D. Kim, and Y. W. Kim, "Processing of Microcellular Silicon Carbide Ceramics with a Duplex Pore Structure," J. Eur. Ceram. Soc., 30 [12] 2671-76 (2010).   DOI
6 R. Ahmad, S. M Anwar, J. Kim, I. H. Song, S. Z. Abbas, S. A. Ali, F. Ali, J Ahmad, H. B. Awais, and M. Mehmood, "Porosity Features and Gas Permeability Analysis of Bimodal Porous Alumina and Mullite for Filtration Applications," Ceram. Int., 42 [16] 18711-17 (2016).   DOI
7 Y. Okiyama and R. Yamaguchi, "Enhanced Ceramic Material for Precision Alignment Mechanism"; US Patent 10/895,091 (July 21, 2004).
8 K. Toshihiko, "Semiconductive Ceramic and Its Production"; JP Patent, JP1997000360094 (July 13, 1999).
9 J. S. Reed, Principles of Ceramics Processing; pp. 596, Wiley, New York, 1995.
10 N. Claussen, T. Le, and S. Wu, "Low-Shrinkage Reaction-bonded Alumina," J. Eur. Ceram. Soc., 5 [1] 29-35 (1989).   DOI
11 J. R, Keski and I. B. Cutler, "Effect of Maganese Oxide on Sintering of Alumina," J. Am. Ceram. Soc., 48 [12] 653-54 (1965).   DOI
12 W. Acchar, D. Schwarze, and P. Greil, "Sintering of $Al_2O_3$-NbC Composites Using $TiO_2$ and MnO Additives: Preliminary Results," Mater. Sci. Eng., A, 351 299-303 (2003).   DOI
13 K. T. Jacob, "Revision of Thermodynamic Data on MnO-$Al_2O_3$ Melts," Can. Metall. Q., 20 [1] 89-92 (1981).   DOI
14 M. Sathiyakumar and F. D. Gnanam, "Influence of MnO and $TiO_2$ Additives on Density, Microstructure and Mechanical Properties of $Al_2O_3$," Ceram. Int., 28 [2] 195-200 (2002).   DOI
15 S. M. Olhero and J. M. F. Ferreira, "Effect of Different Oxide Additives on Colloidal Processing and Sintering of Alumina," Mater. Sci. Forum., 455-6 216-20 (2004).   DOI
16 I. H. Song, M. J. Park, H. D. Kim, Y. W. Kim, and J. S. Bae, "Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (in Korean)," J. Korean Ceram. Soc., 47 [6] 546-52 (2010).   DOI
17 K. S. Cho, H. K. Lee, Y. I. Park, and M. Y. Kim "Electrical Properties of Large Alumina Ceramics Prepared by Various Processing (in Korean)," J. Korean Ceram. Soc., 49 [2] 179-84 (2012).   DOI
18 H. J. Kim, Y. G. Shin, H. K. Ahn, and D. W. Kim, "A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern (in Korean)," J. Korean Inst. Surf. Eng., 44 [4] 165-71 (2011).   DOI
19 T. Watanabe, T. Kitabayashi, and C. Nakayama, "Relationship between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck," Jpn. J. Appl. Phys., 32 [2] 864-71 (1993).   DOI
20 A. Guidara, K. Chaari, and J. Bouaziz, "Effect of Titania Additive on Structural and Mechanical Properties of Alumina-Fluorapatite Composites," J. Mater. Sci. Technol., 28 [12] 1130-36 (2012).   DOI
21 M. C. Moreira and A. M. Segadaes, "Phase Equilibrium Relationships in the System $Al_2O_3-TiO_2$-MnO, Relevant to the Low-temperature Sintering of Alumina," J. Eur. Ceram. Soc., 16 [10] 1089-98 (1996).   DOI
22 A. Petric and H. Ling, "Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures," J. Am. Ceram. Soc., 90 [5] 1515-20 (2007).   DOI
23 R. S. Singh, T. H. Ansari, and R. A. Singh, "Electrical Conduction in $MnTiO_3$ Single Crystal," Proc. Indian Natl. Sci. Acad., 61 [6A] 425-32 (1995).