Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.6.527

Protonic Conduction Properties of Nanostructured Gd-doped CeO2 at Low Temperatures  

Park, Hee Jung (Dep. of Advanced Materials Engineering, Daejeon University)
Shin, Jae Soo (Dep. of Advanced Materials Engineering, Daejeon University)
Choa, Yong Ho (Dep. of Chemical Engineering, Hanyang University)
Song, Han Bok (Dep. of Chemical Engineering, Hanyang University)
Lee, Ki Moon (Dep. of Physics, Kunsan Nat. University)
Lee, Kyu Hyoung (Dep. of Nano Applied Engineering, Kangwon Nat. University)
Publication Information
Abstract
The electrical properties of nanostructured Gd-doped $CeO_2$ (n-GDC) as a function of temperature and water partial-pressure were investigated using ac and dc measurements. For n-GDC, protonic conductivity prevails under wet condition and at low temperatures (< $200^{\circ}C$), while oxygen ionic conductivity occurs at high temperatures (> $200^{\circ}C$) under both dry and wet conditions. The grain boundaries in n-GDC were highly selective, being conductive for protonic transport but resistive for oxygen ionic transport. The protonic conductivity reaches about $4{\times}10^{-7}S/cm$ at room temperature (RT).
Keywords
Nanostructure; Protonic conductor; Ceria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Hino, K. Haga, H. Aita, and K. Sekita, "R&D on Hydrogen Production by High-Temperature Electrolysis of Steam," Nucl. Eng. Des., 233 [1-3] 363-75 (2004).   DOI
2 K. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003).   DOI
3 F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, "Microstructures and Grain Boundary Conductivity of $BaZr_{1-x}Y_xO_3 $ (x = 0.05, 0.10, 0.15) Ceramics," Solid State Ionics, 178 [7-10] 691-95 (2007).   DOI
4 H. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).   DOI
5 R. Slade, S. Flint, and N. Singh, "Investigation of Protonic Conduction in Yb- and Y-Doped Barium Zirconates," Solid State Ionics, 82 [3-4] 135-41 (1995).   DOI
6 R. Cervera, Y. Oyama, S. Miyoshi, K. Kobayashi, T. Yagi, and S. Yamaguchi, "Structural Study and Proton Transport of Bulk Nanograined Y-doped $BaZrO_3$ Oxide Protonics Materials," Solid State Ionics, 179 [7-8] 236-42 (2008).   DOI
7 X. Guo, "On the Degradation of Zirconia Ceramics during Low-Temperature Annealing in Water or Water Vapor," J. Phys. Chem. Solids, 60 [4] 539-46 (1999).   DOI
8 U. Anselmi-Tamburini, F. Maglia, G. Chiodelli, P. Riello, S. Bucella, and Z. Munir, "Enhanced Protonic Conductivity in Fully Dense Nanometric Cubic Zirconia," Appl. Phys. Lett., 89 163116-19 (2006).   DOI
9 S. Kim, U. Anselmi-Tamburini, H. Park, M. Martin, and Z. Munir, "Unprecedented Room-Temperature Electrical Power Generation using Nanoscale Fluorite-Structured Oxide Electrolytes," Adv. Mat., 20 [3] 556-59 (2008).   DOI
10 S. Miyoshi, Y. Akao, N. Kuwata, J. Kawamura, Y. Oyama, T. Yagi, and S. Yamaguchi, "Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia," Chem. Mater., 26 [18] 5194-200 (2014).   DOI
11 M. Shirpour, G. Gregori, R. Merkle, and J. Maier, "On the Proton Conductivity in Pure and Gadolinium Doped Nanocrystalline Cerium Oxide," Phys. Chem. Chem. Phys., 13 [3] 937-40 (2011).   DOI
12 C. Tande, D. Perez-Coll, and G. Mather, "Surface Proton Conductivity of Dense Nanocrystalline YSZ," J. Mater. Chem., 22 11208-13 (2012).   DOI
13 S. Kim, H. Avila-Paredez, S. Wang, C. Chen, R. De Souza, M. Martin, and Z. Munir, "On the Conduction Pathway for Protons in Nano-Crystalline Yttria-Stabilized Zirconia," Phys. Chem. Chem. Phys., 11 [17] 3035-37 (2009).   DOI
14 Y. Anselmi-Tamburini, G. Garay, and Z. Munir, "Dense nanostructured oxides with fine crystals prepared by field activation sintering"; US Patent 013, 872 (October, 26, 2006).
15 H. Park and Y. Choa, "The Grain Boundary Conduction Property of Highly Dense and Nanostructured Yttrium-Doped Zirconia," Electro. Sol. St. Let., 13 [5] K49-52 (2010).   DOI
16 H. Park and G. Choi, "The Electrical Conductivity and Oxygen Permeation of Ceria with Alumina Addition at High Temperature," Solid State Ionics, 178 [33-34] 1746-55 (2008).   DOI
17 T. Zhang, J. Ma, Y. Leng, S. Chan, P. Hing, and J. Kilner, "Effect of Transition Metal Oxides on Densification and Electrical Properties of Si-Containing $Ce_{0.8}Gd_{0.2}O_2$ Ceramics," Solid State Ionics, 168 [1-2] 187-95 (2004).   DOI
18 S. Raz, K. Sasaki, J. Maier, and I. Riess, "Characterization of Adsorbed Water Layers on $Y_2O_3$-Doped $ZrO_2$," Solid State Ionics, 143 [2] 181-204 (2001).   DOI