Browse > Article
http://dx.doi.org/10.4191/kcers.2014.51.6.605

Preparation of SrGd2(MoO4)4:Er3+/Yb3+ Phosphors by the Microwave-Modified Sol-Gel Method and Their Upconversion Photoluminescence Properties  

Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Abstract
$SrGd_{2-x}(MoO_4)_4:Er^{3+}/Yb^3$ phosphors with doping concentrations of $Er^{3+}$+ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) were successfully synthesized by the cyclic microwave-modified sol-gel method, and their upconversion mechanism and spectroscopic properties have been investigated in detail. Well-crystallized particles showed a fine and homogeneous morphology with grain sizes of $2-5{\mu}m$. Under excitation at 980 nm, $SrGd_{1.7}(MoO_4)_4:Er_{0.1}Yb_{0.2}$ and $SrGd_{1.5}(MoO_4)_4:Er_{0.05}Yb_{0.45}$ particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, and a very weak 655-nm emission band in the red region. The Raman spectra of the doped particles indicated the domination of strong peaks at higher frequencies of 1023, 1092, and $1325cm^{-1}$ and at lower frequencies of 223, 2932, 365, 428, 538, and $594cm^{-1}$ induced by the incorporation of the $Er^{3+}$+ and $Yb^{3+}$+ elements into the $Gd^{3+}$ site in the crystal lattice, which resulted in the unit cell shrinkage accompanying a new phase formation of the $[MoO_4]^{2-}$ groups.
Keywords
Phosphor; Upconversion; Sol-gel; Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. L. Yang, X. M. Li, W. L. Feng, W. L. Li, and C. Y. Tao, "Co-precipitation Synthesis and Photoluminescence Properties of ($Ca_{1-x-y}$, $Ln_y$)$MoO_4$: $xEu^{3+}$(Ln=Y, Gd) Red Phosphors," J. Alloys Compd., 505 239-42 (2010).   DOI   ScienceOn
2 Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and Q. Meng, "Concentration-dependent Luminescence and Energy Transfer of Flower-like $Y_2(MoO_4)_3$ :$Dy^{3+}$ Phosphor," J. Alloys Compd., 509 6096-102 (2011).   DOI
3 Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao, and H. Xu, "Upconversion Luminescence of $KGd(MoO_4)_2:Er^{3+}$, $Yb^{3+}$) Powder Prepared by Pechini Method," J. Rare Earths, 29 [9] 843-48 (2011).   DOI   ScienceOn
4 Y. Huang, L. Zhou, and Z. Tang, "Self-assembled 3D Flower-like $NaY(MoO_4)_2:Eu^{3+}$ Microarchitectures: Hydrothermal Synthesis, Formation Mechanism and Luminescence Properties," Opt. Mater., 33 [6] 777-82 (2011).   DOI   ScienceOn
5 Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng, and R. Hua, "Ionic Liquidassisted Hydrothermal Synthesis of Dendrite-like $NaY(MoO_4)_2:Tb^{3+}$," Phys. B, 407 [13] 2556-59 (2012).   DOI   ScienceOn
6 Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong, and Q. Su, "$NaEu_{0.96}Sm_{0.04}(MoO_4)_2$ As a Promosing Red-emitting Phosphor for LED Solid-state Lighting Prepared by the Pechini Process," J. Lumin., 128 [1] 147-54 (2008).   DOI   ScienceOn
7 X. Shen, L. Li, F. He, X. Meng, and F. Sing, "Effects of Doped-$Li^+$ and -$Eu^{3+}$ Ions Content on Structure and Luminescent Properties of $Li_xSr_{1-2x}(MoO_4);{Eu^{3+}}_x$ Red-emitting Phosphors for White LEDs," Mater. Chem. Phys., 132 [2-3] 471-75 (2012).   DOI
8 J. Zhang, X. Wang, X, Zhang, X. Zhao, X. Liu, and L. Peng, "Microwave Synthesis of $NaLa(MoO_4)_2$ Microcrystals and Their Near-infraed Luminescent Properties with Lanthanide Ion Doping ($Er^{3+}$, $Nd^{3+}$, $Yb^{3+}$)," Inog. Chem. Comm., 14 [11] 1723-27 (2011).   DOI   ScienceOn
9 S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, "Prospects of Microwave Processing: An Overview," Bull. Mater. Sci., 32 1-13 (2009).   DOI   ScienceOn
10 T. Thongtem, A. Phuruangrat, and S. Thongtem, "Microwave-assisted Synthesis and Characterization of $SrMoO_4$ and $SrWO_4$ Nanocrystals," J. Nanopart. Res., 12 [6] 2287-94 (2010).   DOI   ScienceOn
11 V. Thangadurai, C. Knittlmayer, and W. Weppner, "Metathetic Room Temperature Preparation and Characterization of Scheelite-type $ABO_4$(A=Ca, Sr, Ba, Pb; B=Mo, W) powders," Mater. Sci. Eng. B, 106 [3] 228-33 (2004).   DOI   ScienceOn
12 C. S. Lim, "Cyclic MAM Synthesis and Upconversion Photoluminescence Properties of $CaMoO_4:Er^{3+}/Yb^{3+}$ Particles," Mater. Res. Bull., 47 [12] 4220-25 (2012).   DOI   ScienceOn
13 J. Sun, Y. Lan, Z. Xia, and H. Du, "Sol-gel Synthesis and Green Upconversion Luminescence in $BaGd_2(MoO_4)_4:Yb^{3+}$, $Er^{3+}$ Phosphors," Opt. Mater., 33 [3] 576-581(2011).   DOI   ScienceOn
14 M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu, and T. Lu, "Recent Advances in Synthesis and Surface Modification of Lanthanide-doped Upconversion Nanoparticles for Biomedical Napplications," Bio. Adv., 30 [6] 1551-61 (2012).   DOI   ScienceOn
15 W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu, and B. Chen, "The Concentration Effect of Upconversion Luminescence Properties in $Er^{3+}/Yb^{3+}$-codoped $Y_2(MoO_4)_3$ Phosphors," Phys. B, 405 [16] 3284-88 (2010).   DOI   ScienceOn
16 J. Sun, B. Xue, and H. Du, "Synthesis and Luminescence Properties of $Gd_6(MoO_4)_{12}:Yb^{3+},Er^{3+}$ Phosphor with Enhanced Photoluminescence by $Li^+$ Doping," Infr. Phys. Tech., 60 10-14 (2013).   DOI   ScienceOn
17 Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang, and C. Wang, "Enhancement of the Upconversion Luminescence Intensity in $Er^{3+}$ Doped $BaTiO_3$ Nanocrystals by Codoping with $Li^+$ Ions," J. Alloys Compd., 509 [17] 5336-40 (2012).
18 J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang, and Q. Zhou, "Sol-gel Preparation and Photoluminsence Properties of $CaLa_2(MoO_4)_4:Eu^{3+}$ Phosphors," J. Lumin., 134 533-38 (2013).   DOI   ScienceOn
19 C. Guo, H. K. Yang, and J. H. Jeong, "Preparation and Luminescence Properties of Phosphor $MGd_2(MoO_4)_4:Eu^{3+}$ (M=Ca, Sr and Ba)," J. Lumin., 130 [8] 1390-93 (2010).   DOI   ScienceOn
20 T. Li, C. Guo, Y. Wu, L. Li, and J. H. Jeong, "Green Upconversion Luminescence in $Yb^{3+}/Er^{3+}$ Co-doped $ALn(MoO_4)_2$ (A=Li, Na and K; La, Gd, and Y)," J. Alloys Compd., 540 107-12 (2012).   DOI
21 Z. Wang, H. Liang, M. Gong, and Q. Su, "Luminescence Investigation of $Eu^{3+}$ Activated Double Molybdates Red Phosphors with Scheelite Structure," J. Alloys Compd., 432 [1-2] 308-12 (2007).   DOI   ScienceOn
22 M. Nazarov and D. Y. Noh, "Rare Earth Double Activated Phosphors for Different Applications," J. Rare Earths, 28 [1] 1-11(2010).
23 M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, "Upconversion Nanoparticles: Synthesis, Surface Modification and Biological Applications," Nanomedicine: Nanotech. Biol. Med., 7 [6] 710-29 (2011).   DOI   ScienceOn
24 J. Sun, W. Zhang, W. Zhang, and H. Du, "Synthesis and Two-color Emission Properties of $BaGd_2(MoO_4)_4:Eu^{3+},Er^{3+},Yb^{3+}$ Phosphors," Mater. Res. Bull., 47 [3] 786-89 (2012).   DOI   ScienceOn
25 H. Du, Y. Lan, Z. Xia, and J. Sun, "Synthesis and Upconversion Luminescence Properties of $Yb^{3+},Er^{3+}$ Co-doped $BaGd_2(MoO_4)_4$ Powder," Mater. Res. Bull., 44 [8] 1660-62 (2009).   DOI   ScienceOn
26 M. Haque and D. K. Kim, "Luminescent Properties of $Eu^{3+}$ Activated Doped $MGd_2(MoO_4)_4$ Based (M=Ba, Sr, and Ca) Novel Red-emitting Phosphors," Mater. Lett., 63 793-96 (2009).   DOI   ScienceOn
27 A. Shalav, B. S. Richards, and M. A. Green, "Luminescent Layers for Enhanced Silicon Solar Cell Performance Upconversion," Sol. Ener. Mater. Sol. Cells, 91 [9] 829-42 (2007).   DOI   ScienceOn
28 C. Zhao, X. Yin, F. Huang, and Y. Hang, "Synthesis and Photoluminescence Properties of High-brightened $Eu^{3+}$-doped $M_2Gd_4(MoO_4)_7$ (M=Li, Na) Red Phosphors," J. Sol. State Chem., 184 3190-94 (2011).   DOI   ScienceOn
29 L. Qin, Y. Huang, T, Tsuboi, and H. J. Seo, "The Red-emitting Phosphors of $Eu^{3+}$-activated $MR_2(MoO_4)_4$ (M=Ba, Sr, Ca; R=$La^{3+}$, $Gd^{3+}$, $Y^{3+}$) for Light Emitting Diodes," Mater. Res. Bull., 47 [12] 4498-502 (2012).   DOI   ScienceOn