Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.6.372

Machinable SiC Ceramics with Addition of Al2TiO5  

Kim, Il Soo (Department of Materials and Components Engineering, Dongeui University)
Park, Jeong Hyun (Department of Materials and Components Engineering, Dongeui University)
Lee, Won Jae (Department of Materials and Components Engineering, Dongeui University)
Lee, Kang Ho (Dandan Materials)
Publication Information
Abstract
Machinable SiC ceramics are prepared with the addition of $Al_2TiO_5$. Ready-to-press SiC and $Al_2TiO_5$ powders are mixed and pressureless sintered at $1750^{\circ}C$ and $1850^{\circ}C$ for 1 h. The weight ratios of the SiC and $Al_2TiO_5$ powders are 100 : 0, 100 : 10, and 100 : 20. After sintering, only SiC peaks are detected in the X-ray diffraction analyses. The density, strength, and grain size of the SiC increase with increases in the $Al_2TiO_5$ content and sintering temperature. The $Al_2TiO_5$-doped specimens are easy to micro-hole machine. Based on the density and strength data, the ceramics sintered at $1850^{\circ}C$ can be used as machinable ceramics.
Keywords
SiC; $Al_2TiO_5$; Machinable ceramics; Pressureless sintering;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 H. Li, H. Jin, Q. Zhang, J. Yang, and Z. Jin, "SiC/C Machinable Ceramics Surface Hardening by Silicon Infiltration," Scr. Mater., 63 [12] 1177-80 (2010).   DOI   ScienceOn
2 T. Yamaguchi, "Technology of Characterization to Ceramics (in Jpn.)," Ceramics, 19 [6] 520-9 (1984).
3 H. A. J. Thomas and R. Stevens, "Aluminium Titanate - A Literature Review," Trans. J. Br. Ceram. Soc, 88 144-51 (1989).
4 I. J. Kim and C. Zografou, "Thermal Shock Resistance of $Al_2TiO_5$ Ceramics Prepared from Electrofused Powders (in Korean)," J. Kor. Ceram. Soc., 35 [10] 1061-69 (1998).   과학기술학회마을
5 I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to Automobile Engine (in Korean)," Ceram. Tech., 10 [1] 68-75 (1995).
6 I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to High Temperature Structural Material Industry (in Korean)," Ceram. Tech., 10 [3] 283-88 (1995).
7 J. H. Park, W. J. Lee, and I. S. Kim, "$Al_2TiO_5$-machinable Ceramics Made by Reactive Sintering of $Al_2O_3\;and\;TiO_2$ (in Korean)," J. Kor. Ceram. Soc., 47 [6] 498-502 (2010).   과학기술학회마을   DOI   ScienceOn
8 J. H. Park, D. S. Jung, W. J. Lee, and I. S. Kim, "Machinable Ceramics Made by the Reaction Sintering of PSZ, $Al_2O_3\;and\;TiO_2$ (in Korean)," J. Kor. Ceram. Soc., 49 [6] 581-85 (2012).   과학기술학회마을   DOI   ScienceOn
9 http://www.sic.saint-gobain.com/sika-tech-technical-ceramics.aspx
10 S. H. Lee and H. D. Kim, "SiC Sintering Technology Trends (in Korean)," Ceramist, 13 [6] 26-34 (2010).
11 D. W. Richerson, Modern Ceramic Engineering, 3rd Ed.; pp. 488-90, CRC Press, Boca Raton, FL, 2006.
12 K. Suzuki and M. Sasaki, "Effects of Sintering Atmosphere on Grain Morphology of Liquid-phase-sintered SiC with $Al_2O_3$ Additions," J. Eur. Ceram. Soc., 25 [9] 1611-18 (2005).   DOI   ScienceOn
13 Y. I. Lee and Y. W. Kim, "Effect of Processing on Densification of Nanostructured SiC Ceramics Fabricated by Two-step Sintering," J. Mater. Sci., 39 [11] 3801-03 (2004).   DOI   ScienceOn
14 G.-Y. Gil, A. Noviyanto, Y.-H. Han, and D.-H. Yoon, "Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of ${\beta}$-SiC (in Korean)," J. Kor. Ceram. Soc., 47 [6] 485-90 (2010).   과학기술학회마을   DOI   ScienceOn
15 K. Shimoda, T. Hinoki, and A. Koyama, "Effect of Additive Content on Transient Liquid Phase Sintering in SiC Nanopowder Infiltrated $SiC_f/SiC$ Composites," Compos. Sci. Technol., 71 609-15 (2011).   DOI   ScienceOn
16 S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of MgO and $SiO_2$ on Thermal Decomposition of $Al_2TiO_5$ (in Korean)," J. Kor. Ceram. Soc., 36 [4] 425-31 (1999).   과학기술학회마을
17 S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of Bicomponent Additives on Thermal Decomposition of $Al_2TiO_5$ (in Korean)," J. Kor. Ceram. Soc., 36 [6] 632-39 (1999).   과학기술학회마을
18 M. Vlasova, M. Kakazey, P. A. M. Aguila, V. Stetsenko, A. Baykov, and S. Lakiza, "Structural and Phase Evolution in Laser Treatment of $Al_2O_3-TiO_2-Y_2O_3$ Powder Mixtures," J. Alloys Compd., in press (2013).
19 E. S. de Sola, F. J. Serrano, E. Delgado-Pinar, M. M. Reventos, A. I. Pardo, M. A. Kojdecki, H. M. Amigo, and J. Alarcon, "Solubility and Microstructural Development of $TiO_2$-Containing $3Al_2O_32SiO_2\;and\;2Al_2O_3SiO_2$ Mullites Obtained from Single-Phase Gels," J. Eur. Ceram. Soc., 27 2647-54 (2007).   DOI   ScienceOn
20 A. Adamczyk and E. Dlugon, "The FTIR Studies of Gels and Thin Films of $Al_2O_3-TiO_2\;and\;Al_2O_3-TiO_2-SiO_2$ Systems," Spectrochim. Acta, Part A, 89 11-17 (2012).   DOI   ScienceOn
21 S. G Lee, Y. W. Kim, and M. Mitomo, "Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics," J. Am. Ceram. Soc., 84 [6] 1347-53 (2001).
22 M. F. Zawrah and L. Shaw, "Liquid Phase Sintering of SiC in Presence of CaO," Ceram. Int., 30 [5] 721-25 (2004).   DOI   ScienceOn
23 E. Gomez, J. Echeberria, I. Iturriza, and F. Castro, "Liquid Phase Sintering of SiC with Additions of $Y_2O_3,\;Al_2O_3\;and\;SiO_2$," J. Eur. Ceram. Soc., 24 [9] 2895-903 (2004).   DOI   ScienceOn
24 D. W. Richerson, Modern Ceramic Engineering, 3rd Ed.; pp. 487, CRC Press, Boca Raton, FL, 2006.
25 S. Bueno, L. Micele, C. Baudin, and G. de Portu, "Reduced Strength Degradation of Alumina-Aluminium Titanate Composite Subjected to Low-velocity Impact Loading," J. Eur. Ceram. Soc., 28 [15] 2923-31 (2008).   DOI   ScienceOn
26 Z. Li and R. C. Brandt, "Thermal Expansion and Thermal Expansion Anisotropy of SiC Polycrystals," J. Am. Ceram. Soc., 70 [7] 445-48 (1987).   DOI   ScienceOn
27 P. Blake, T. Bifano, T. Dow, and R. O. Scattergood, "Precision Machining of Ceramic Materials," Am. Ceram. Soc. Bull., 67 [6] 1038-43 (1988).
28 J. Eichler, "Industrial Applications of Si-based Cearmics," J. Kor. Ceram. Soc., 49 [6] 561-65 (2012).   DOI   ScienceOn
29 J. D. Lee, "Technology Trends of High Purity SiC Material (in Korean)," Ceramist, 15 [5] 51-58 (2012).
30 K. S. Cho, S. H. Yoon, H. Jung, S. H. Chae, K. Y. Lim, Y. W. Kim, and S. W. Park, "SiC Material Technology for Semiconductor Manufacturing Process (in Korean)," Ceramist, 12 [1] 33-48 (2009).
31 H. Jin, H. Xu, G. Quio, J. Gao, and Z. Jin, "Study of Machinable Silicon Carbide-Boron Nitride Ceramic Composites," Mater. Sci. Eng., A, 483-484 214-17 (2008).   DOI   ScienceOn
32 H. Wu and W. Zhang, "Fabrication and Properties of $ZrB_2$-SiC-BN Machinable Ceramics," J. Eur. Ceram. Soc., 30 [4] 1035-42 (2010).   DOI   ScienceOn