Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.2.168

Influence of the Binder Types on the Electrochemical Characteristics of Si-C Composites Electrode in LIBs  

Jung, Sung-Hun (Advanced Material Engineering, Yonsei University)
Ji, Mijung (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology)
Park, Geunyeong (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology)
Hong, Jongill (Advanced Material Engineering, Yonsei University)
Choi, Byung-Hyun (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Abstract
This work presents the effects of binders on the electrochemical performance of Si-C composites as the anode of lithium ion batteries. PAI (polyamide-imide) was used as an organic binder, and PAN (polyacrylonitrile), PAA (polyacrylic acid) and CMC + SBR (carboxymethyl cellulose + styrene-butadiene rubber) were used as aqueous binders. As a result, stabilization time for the cell with a Si-C composite anode synthesized using aqueous binders became shorter than an organic binder. Particularly in the case of the cell using PAA binder, better performance was observed in terms of adhesion strength, initial efficiency, the volume expansion ratio, Coulombic efficiency, and capacity retention.
Keywords
Si-C composites; Aqueous binder; Polyacrylic acid; Anode materials; LIBs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Lee, H. H. Kim, S. B. Wee, and U. Paik, "Effect of Additives on the Dispersion Properties of Aqueous Based $C/LiFePO_4$ Paste and its Impact on Lithium Ion Battery High Power Properties," Kona Powder Partical J., 27 239-45 (2009).   DOI
2 H. K. Park, B. S. Kong, and E. S. Oh, "Effect of High Adhesive Polyvinyl Alcohol Binder on the Anodes of Lithium Ion Batteries," Electrochem. Commun., 13 [10] 1051-53 (2011).   DOI   ScienceOn
3 L. Gong, M. H. T. Nguyen, and E. S. Oh, "High Polar Polyacrylonitrile as a Potential Binder for Negative Electrodes in Lithium Ion Batteries," Electrochem. Commun., 29 45-47 (2013).   DOI   ScienceOn
4 J. Li, R. Klopsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, and S. Passerini, "Synthesis and Electrochemical Performance of the High Voltage Cathode Material $Li[Li_{0.2}Mn_{0.56}Ni_{0.16}Co_{0.08}]O_2$ with Improved Rate Capability," J. Power Sources, 196 [10] 4821-25 (2011).   DOI   ScienceOn
5 G. T. Kim, S. S. Jeong, M. Joost, E. Rocca, M. Winter, S. Passerini, and A. Balducci, "Use of Natural Binders and Ionic Liquid Electrolytes for Greener and Safer Lithium-Ion Batteries," J. Power Sources, 196 [4] 2187-94 (2011).   DOI   ScienceOn
6 P. Zuo, G. Yin, and Y. Ma, "Electrochemical Stability of Silicon/ Carbon Composite Anode for Lithium Ion Batteries," Electrochem. Acta, 52 [15] 4878-83 (2007).   DOI   ScienceOn
7 J. Li, R. B. Lewis, and J. R. Dahn, "Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries," Electrochem. Solid-state Lett., 10 [2] A17-20 (2007).   DOI
8 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, and G. Yushin, "Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid," ACS Appl. Mater. Interfaces, 2 [11] 3004-10 (2010).   DOI   ScienceOn
9 B. R. Lee and E. S. Oh, "Effect of Molecular Weight and Degree of Substitution of a Sodium-Carboxymethyl Cellulose Binder on $Li_4Ti_5O_{12}$ Anodic Performance," J. Phys. Chem. C, 117 [9] 4404-09 (2013).
10 Z. J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, and S. Komaba, "High-Capacity Si-Graphite Composite Electrodes with A Self-Formed Porous Structure by a Partially Neutralized Polyacrylate for Li-Ion Batteries," Energ. Environ. Sci., 5 [10] 9014-20 (2012).   DOI   ScienceOn
11 Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, and Y. Takeda, "Morphology-Stable Silicon-Based Composite for Li-Intercalation," Solid State Ionics, 168 [1] 61-68 (2004).   DOI   ScienceOn
12 M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, "Carbon-Coated Si as a Lithium-Ion Battery Anode Material," J. Electrochem. Soc., 149 [12] A1598-1603 (2002).   DOI   ScienceOn
13 H. Y. Lee and M. S. Lee, "Graphite-FeSi Alloy Composites as Anode Materials for Rechargeable Lithium Batteries," J. Power Sources, 112 [2] 649-54 (2002).   DOI   ScienceOn
14 L. Chen, X. Xie, J. Xie, K. Wang, and J. Yang, "Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries," J. Appl. Electrochem., 36 [10] 1099-104 (2006).   DOI
15 T. Hasegawa, S. R. Mukai, Y. Shirato, and H. Tamon, "Preparation of Carbon Gel Microspheres Containing Silicon Powder for Lithium Ion Battery Anodes," Carbon, 42 [12] 2573-79 (2004).   DOI   ScienceOn
16 H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang, "A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries," Electrochem. Solid. St., 2 [11] 547-49. (1999).   DOI
17 G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, "Structure and Lithium Insertion Properties of Carbon Nanotubes," J. Electrochem. Soc., 146 [5] 1696-701 (1999).   DOI   ScienceOn
18 C. Wang, A. J. Appleby, and F. E. Little, "Electrochemical Study on Nano-Sn, $Li_{4.4}Sn$ and $AlSi_{0.1}$ Powders Used as Secondary Lithium Battery Anodes," J. Power Sources, 93 [1] 174-85 (2001).   DOI   ScienceOn
19 Z. Chen, V. Chevrier, L. Christensen, and J. R. Dahn, "Design of Amorphous Alloy Electrodes for Li-Ion Batteries A Big Challenge," Electrochem. Solid-state Lett., 7 [10] A310-14 (2004).   DOI   ScienceOn
20 N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, "Enhanced Electrochemical Properties of A Si-Based Anode Using An Electrochemically Active Polyamide Imide Binder," J. Power Sources, 177 [2] 590-94 (2008).   DOI   ScienceOn
21 N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, and M. Winter, "Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability," Electrochem. Solid-state Lett., 11 [5] A76-80 (2008).   DOI