Browse > Article
http://dx.doi.org/10.4191/kcers.2011.48.6.641

Influence of Sintering Atmosphere on Abnormal Grain Growth Behaviour in Potassium Sodium Niobate Ceramics Sintered at Low Temperature  

Fisher, John G. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Choi, Si-Young (Korea Institute of Materials Science)
Kang, Suk-Joong L. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Abstract
The present study aims to identify the effect of sintering atmosphere [$O_2$, 75$N_2$-25 $H_2$ (mol%) and $H_2$] on microstructural evolution at the relatively low sintering temperature of 1040$^{\circ}C$. Samples sintered in $O_2$ showed a bimodal microstructure consisting of fine matrix grains and large abnormal grains. Sintering in 75 $N_2$ - 25 $H_2$ (mol %) and $H_2$ caused the extent of abnormal grain growth to increase. These changes in grain growth behaviour are explained by the effect of the change in step free energy with sintering atmosphere on the critical driving force necessary for rapid grain growth. The results show the possibility of fabricating $(K_{0.5}Na_{0.5})NbO_3$ at low temperature with various microstructures via proper control of sintering atmosphere.
Keywords
Lead-free piezoelectric; Grain growth; Grain boundaries; Sintering atmosphere; Niobates;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Y. Chung, D. Y. Yoon, and S. J. L. Kang, "Effect of Donor Concentration and Oxygen Partial Pressure on Interface Morphology and Grain Growth Behaviour in $SrTiO_3$," Acta. Mater., 50 3361-71 (2002).   DOI
2 Y. M. Chiang, D. Birnie III, and W. D. Kingery, "Chapter 2: Defects in Ceramics," pp. 101-184, Physical Ceramics: Principles for Ceramic Science and Engineering. New York: John Wiley & Sons; 1997.
3 W. K. Burton, N. Cabrera, and F. C. Frank, "The Growth of Crystals and the Equilibrium Structure of their Surfaces," Philos. Trans. R. Soc. Lon. Ser. A., 243 299-358 (1951).   DOI
4 E. D. Williams and N. C. Bartelt, "Thermodynamics of Surface Morphology," Science, 251 393-400 (1991).   DOI
5 E. D. Williams, "Surface Steps and Surface Morphology: Understanding Macroscopic Phenomena from Atomic Observations," Surface Science, 299/300 502-24 (1994).   DOI
6 C. A. Randall, N. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, "Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics," J. Am. Ceram. Soc., 81 [3] 677-88 (1998).
7 S. B. Lee and Y. M. Kim, "Kinetic Roughening of a ${\Sigma}5$ Tilt Grain Boundary in $SrTiO_3$," Acta. Mater., 57 5264-9 (2009).   DOI
8 J. P. Hirth and G. M. Pound, "Chapter D: Growth and Evaporation of Liquids and Dislocation-Free Crystals," p. 77-101, Condensation and Evaporation: Nucleation and Growth Kinetics Oxford: Pergamon Press; 1963.
9 H. Gleiter, "The Formation of Annealing Twins," Acta. Metall., 17 1421-28 (1969).   DOI
10 J. P. van der Eerden, Chapter 6: "Crystal Growth Mechanisms," p. 311-475 in: D.T.J Hurle (Ed.), Handbook of Crystal Growth, Vol. 1, Fundamentals, Part A, Thermodynamics and Kinetics, Amsterdam: Elsevier Science Publishers; 1993.
11 S. D. Peteves and R. Abbaschian,"Growth Kinetics of Solid-Liquid Ga Interfaces: Part II. Theoretical," Metall. Trans. A., 22 1271-86 (1991).   DOI
12 D. Y. Yoon, C. W. Park, and J. B. Koo, "The Step Growth Hypothesis for Abnormal Grain Growth," pp. 3-21 in: H. I. Yoo, S. J. L. Kang (Eds.), Ceramic Interfaces 2 London: Institute of Materials; 2001.
13 H. J. Leamy and G. H. Gilmer, "The Equilibrium Properties of Crystal Surface Steps," J. Cryst. Growth., 24/25 499-502 (1974).   DOI
14 H. van Beijeren, "Exactly Solvable Model for the Roughening Transition of a Crystal Surface," Phys. Rev. Lett., 38 [18] 993-96 (1977).   DOI
15 J. G. Fisher, M. S. Kim, H. Y. Lee, and S. J. L. Kang, "Effect of $Li_2O$ and PbO Additions on Abnormal Grain Growth in the $Pb(Mg_{1/3}Nb_{2/3})O_{3}-35 $ mol% $PbTiO_3$ System," J. Am. Ceram. Soc., 87 [5] 937-42 (2004).   DOI
16 B. K. Lee, S. Y. Chung, and S. J. L. Kang, "Grain Boundary Faceting and Abnormal Grain Growth in $BaTiO_3$," Acta. Mater., 48 1575-80 (2000).   DOI
17 Y. I. Jung, S. Y. Choi, and S. J. L. Kang, "Effect of Oxygen Partial Pressure on Grain Boundary Structure and Grain Growth Behavior in $BaTiO_3$," Acta. Mater., 54 2849-55 (2006).   DOI
18 J. G. Fisher, D. Rout, K. S. Moon, and S. J. L. Kang, "Structural Changes in Potassium Sodium Niobate Ceramics Sintered in Different Atmospheres," J. Alloys. Compounds., 479 467-72 (2009).   DOI
19 W. Qu, X. Zhao, and X. Tan, "In-Situ Transmission Electron Microscopy Study of the Nanodomain Growth in a Sc-Doped Lead Magnesium Niobate Ceramic," Appl. Phys. Lett., 89 022904 1-3 (2006).
20 H. Birol, D. Damjanovic, and N. Setter, "Preparation and Characterization of $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics," J. Eur. Ceram. Soc., 26 861-66 (2006).   DOI
21 M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, "Sinterability and Piezoelectric Properties of $(K,Na)NbO_3$ Ceramics with Novel Sintering Aid," Jpn. J. Appl. Phys., 43 [10] 7159-63 (2004).   DOI
22 A. Shigemi and T. Wada, "Enthalpy of Formation of Various Phases and Formation Energy of Point Defects in Perovskite-Type $NaNbO_3$ by First-Principles Calculation," Jpn. J. Appl. Phys., 43 [9B] 6793-98 (2004).   DOI
23 H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi, "Microstructural Evolution of Crystalline-Oriented $(K_{0.5}Na_{0.5})NbO_{3}$ Piezoelectric Ceramics with a Sintering Aid of CuO," J. Am. Ceram. Soc., 89 [6] 1951-6 (2006).   DOI
24 A. Shigemi and T. Wada, "Evaluations of Phases and Vacancy Formation Energies in $KNbO_3$ by First-Principles Calculation," Jpn. J. Appl. Phys., 44 [11] 8048-54 (2005).   DOI
25 H. Gleiter, "The Mechanism of Grain Boundary Migration," Acta. Metall., 17 565-73 (1969).   DOI
26 K. L. Merkle and L. J. Thompson, "Atomic-Scale Observation of Grain Boundary Motion," Mater. Lett., 48 188-93 (2001).   DOI
27 D. Jenko, A. Ben an, B. Mali , J. Holc, and M. Kosec, "Electron Microscopy Studies of Potassium Sodium Niobate Ceramics," Microsc Microanal, 11 572-80 (2005).   DOI
28 H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, and W. Zhou, "Preparation and Piezoelectric Properties of $(K_{0.5}Na_{0.5})NbO_{3}$ Lead-Free Piezoelectric Ceramics with Pressure-Less Sintering," Mater. Sci. Eng. B., 131 83-7 (2006).   DOI
29 B. Malic, J. Bernard, A. Bencan, and M. Kosec, "Influence of Zirconia Addition on the Microstructure of $K_{0.5}Na_{0.5}NbO_{3}$ Ceramics," J. Eur. Ceram. Soc., 28 1191-6 (2008).   DOI
30 Y. Zhen and J. F. Li, "Abnormal Grain Growth and New Core-Shell Structure in $(K,Na)NbO_3$-Based Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 90 [11] 3496-502 (2007).   DOI
31 Y. M. Chiang, D. Birnie III, and W. D. Kingery, "Chapter 5: Microstructure," p. 351-513, Physical Ceramics: Principles for Ceramic Science and Engineering New York, John Wiley & Sons, 1997.
32 B. Jaffe, W. R. Cook Jr, and H. Jaffe, "Chapter 8: Perovskite Niobates and Tantalates," p. 192-93 in Piezoelectric Ceramics, London: Academic Press; 1971.
33 J. J. Choi, J. Ryu, and H. E. Kim, "Microstructural Evolution of Transparent PLZT Ceramics Sintered in Air and Oxygen Atmospheres," J. Am. Ceram. Soc., 84 [7] 1465-69 (2001).
34 J. G. Fisher and S. J. L. Kang, "Microstructural Changes in $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics Sintered in Various Atmospheres," J. Eur. Ceram. Soc., 29 2581-88 (2009).   DOI
35 J. G. Fisher, D. Rout, K. S. Moon, and S. J. L. Kang, "High-Temperature X-Ray Diffraction and Raman Spectroscopy Study of $(K_{0.5}Na_{0.5})NbO_{3}$ Ceramics Sintered in Oxidizing and Reducing Atmospheres," Mater. Chem. Phy., 120 [2-3] 263-71 (2010).   DOI
36 E. Ringgaard and T. Wurlitzer, "Lead-Free Piezoceramics Based on Alkali Niobates," J. Eur. Ceram. Soc., 25 2701-6 (2005).   DOI
37 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 84-7 (2004).   DOI
38 R. E. Jaeger and L. Egerton, "Hot Pressing of Potassium-Sodium Niobates," J. Am. Ceram. Soc., 45 [5] 209-13 (1962).   DOI
39 Y. Guo, K. Kakimoto, and H. Ohsato, "$(Na_{0.5}K_{0.5})NbO_{3}$-$LiTaO_{3}$ Lead-Free Piezoelectric Ceramics," Mater Lett., 59 241-44 (2005).   DOI
40 R. Zuo, X. Fang, and C. Ye, "Phase Transitional Behavior and Piezoelectric Properties of Lead-Free $(Na_{0.5}K_{0.5})NbO_{3}$-$(Bi_{0.5}K_{0.5})TiO_{3}$ Ceramics," J. Am. Ceram. Soc., 90 [8] 2424-28 (2007).   DOI