Browse > Article
http://dx.doi.org/10.4191/kcers.2011.48.6.625

Formation of Nb2O5 Microcone Structure in NaF Electrolyte by Anodization  

Jeong, Bong-Yong (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
Jung, Eun-Hye (Department of Chemical Engineering, Inha University)
Publication Information
Abstract
In this study, we show that by anodization of Nb in NaF electrolytes microcone niobium oxide layers can be formed under a range of experimental conditions. It is found that a single NaF electrolyte leads to the formation of microcones. At 1 M NaF, 40 V, 1 h, well-ordered microcones were generated on Nb discs. XRD results show that the initially formed anodic oxide is amorphous, but an amorphous to crystalline transition occurs during anodization. For the formation of favorable microcones, it is considered that proper parameters such as electrolyte concentration, voltage, anodizing time are necessary according to the kind of electrolytes.
Keywords
Anodization; Niobium oxide; Microcone structure; NaF electrolyte;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Tsuchiya, J. M. Macak, I. Sieber, and P. Schmuki, "Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization," Small, 1 [7] 722-25 (2005).   DOI
2 H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268 [5216] 1466-68 (1995).   DOI   ScienceOn
3 H. Masuda, F. Hasegawa, and S. Ono, "Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution," J. Electrochem. Soc., 144 [5] L127-30 (1997).   DOI
4 H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, "Highly Ordered Nanochannel-Array Architecture in Anodic Alumina," Appl. Phys. Lett., 71 [19] 2770-72 (1997).   DOI
5 O. Jessensky, F. Mller, and U. Gsele, "Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina," Appl. Phys. Lett., 72 [10] 1173-75 (1998).   DOI
6 A. P. Li, F. Mller, A. Birner, K. Nielsch, and U. Gsele, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina," J. Appl. Phys., 84 [11] 6023-26 (1998).   DOI
7 Y. Oikawa, T. Minami, H. Mayama, K. Tsujii, K. Fushimi, Y. Aoki, P. Skeldon, G. E. Thompson, and H. Habazaki, "Preparation of Self-Organized Porous Anodic Niobium Oxide Microcones and Their Surface Wettability," Acta Mater., 57 [13] 3941-46 (2009).   DOI
8 S. Yang, Y. Aoki, and H. Hanazaki, "Effect of Electrolyte Temperature on the Formation of Self-Organized Anodic Niobium Oxide Microcones in Hot Phosphate-Glycerol Electrolyte," Appl. Surf. Sci., 257 [19] 8190-195 (2011).   DOI
9 D. A. Vermilyea, "The Crystallization of Anodic Tantalum Oxide Films in the Presence of a Strong Electric Field," J. Electrochem. Soc., 102 [5] 207-14 (1955).   DOI
10 D. M. Lakhiani and L. L. Shreir "Crystallization of Amorphous Niobium Oxide During Anodic Oxidation," Nature, 188 49-50 (1960).   DOI
11 H. Hanazaki, T. Ogasawara, H. Konno, K. Shimizu, S. Nagata, P. Skeldon, and G. E. Thompson, "Field Crystallization of Anodic Niobia," Corros. Sci., 49 [2] 580-93 (2007).   DOI
12 T. Miyazaki, H. M. Kim, T. Kokubo, K. Hirofumi, and T. Nakamura, "Induction and Acceleration of Bonelike Apatite Formation on Tantalum Oxide Gel in Simulated Body Fluid," J. Sol-Gel Sci. Tech., 21 [1-2] 83-8 (2001).   DOI
13 K. Nagahara, M. Sakairi, H. Takahashi, K. Matsumoto, K. Takayama, and Y. Oda, "Mechanism of Formation and Growth of Sunflower-Shaped Imperfections in Anodic Oxide Films on Niobium," Electrochim. Acta, 52 [5] 2134-45 (2004).
14 H. Masuda, K. Yada, and A. Osaka, "Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution," Jpn. J. Appl. Phys., 37 [11A] L1340-42 (1998).   DOI
15 N. F. Jackson and J. C. Hendy, "The Use of Niobium as an Anode Material in Liquid Filled Electrolytic Capacitors," Electrocomp. Sci. Tech., 1 27-37 (1974).   DOI   ScienceOn
16 R. L. Karlinsey, "Preparation of Self-Organized Niobium Oxide Microstructures via Potentiostatic Anodization," Electrochem. Commun., 7 [12] 1190-94 (2005).   DOI
17 K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood, "A Novel Marker for the Determination of Transport Numbers During Anodic Barrier Oxide Growth on Aluminium," Physica B: Condensed Matter., 64 [3] 345-53 (1991)
18 J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim, and M. A. Cho, "Porous Niobium Oxide Films Prepared by Anodization in $HF/H_3PO_4$," Electrochim. Acta, 51 [25] 5502-507 (2006).   DOI
19 H. Habazaki, Y. Oikawa, K. Fushimi, Y. Aoki, K. Shimizu, P. Skeldon, and G.E. Thompson, "Importance of Water Content in Formation of Porous Anodic Niobium Oxide Films in Hot Phosphate-Glycerol Electrolyte," Electrochim. Acta, 54 [3] 946-51 (2009).   DOI
20 J. P. S. Pringle, "The Anodic Oxidation of Superimposed Metallic Layers: Theory," Electrochim. Acta, 25 [11] 1423-437 (1980).   DOI
21 Robert L. Karlinsey, "Self-Assembled $Nb_2O_5$ Microcones with Tailored Crystallinity," J. Mater. Sci., 41 [15] 5017-20 (2006).   DOI
22 H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, "Self-Organized Porous $WO_{3}$ Formed in NaF Electrolytes," Electrochem. Commun., 7 [3] 295-98 (2005).   DOI
23 A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, "Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes," Electrochem. Commun., 7 [5] 49-52 (2005).   DOI
24 H. Tsuchiya and P. Schmuki, "Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization," Electrochem. Commun., 7 [1] 49-52 (2005).   DOI
25 I. Sieber, H. Hildeber, A. Friedrich, and P. Schmuki, "Formation of Self-Organized Niobium Porous Oxide on Niobium," Electrochem. Commun., 7 [1] 97-100 (2005).   DOI