Browse > Article
http://dx.doi.org/10.4191/kcers.2011.48.6.543

Inkjet Printing Technology Still in Progress  

Lee, Mi-Jung (Advanced Materials Engineering Department, Kookmin University)
Publication Information
Abstract
The inkjet printing technology has undergone remarkable development since the concept of printed electronics was first introduced. The large interest which it has sparkled is due to its many enticing features such as processing simplicity, low cost and scalability as well as its compatibility with flexible electronics. Thanks to constant improvements, inkjet printing has nowadays become a mature technology which is an effective replacement for a number of intricate and expensive conventional laboratory tools and is also on the verge of gaining industrial significance. Technological challenges which still remain open include low temperature processing, high density integration and reproducibility. This paper reviews some recent advances in the inkjet printing technology, addressing those issues. And we also discuss a number of novel approaches to performing inkjet printing.
Keywords
Inkjet printing; Printed electronics; Flexible electronics; Solution process; Organic electronics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S.,-I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, "Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes," Science, 323 1590-93 (2009).   DOI   ScienceOn
2 A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, "Patterning Organic Single-crystal Transistor Arrays," Nature, 444 913-17 (2006).   DOI
3 J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, "Very High-mobility Organic Single-crystal Transistors with Incrystal Conduction Channel," Appl. Phys. Lett., 90 102120-2 (2007).   DOI
4 H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, "Inkjet Printing of Single-crystal Films," Nature, 475 364-67 (2011).   DOI   ScienceOn
5 J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, and A. Salleo, "Large Modulation of Carrier Transport by Grain-boundary Molecular Packing and Microstructure in Organic Thin Films," Nature Mater., 8 952-58 (2009).   DOI
6 H.-C. Song, S. Nham, B.-S. Lee, Y. Choi, and B.-H. Ryu, "The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol," J. Kor. Ceram. Soc., 46 [1] 41-6 (2009).   과학기술학회마을   DOI
7 K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus, "Low-temperature, High-performance Solution-processed Metal Oxide Thinfilm Transistors Formed by a 'Sol-gel on Chip' Process," Nature Mater., 10 45-51 (2011).   DOI
8 D. H. Yeon, E. Y. Lee, K. G. Kim, N. G. Park, and Y. S. Cho, "Zinc Borosilicate Thick Films as a Ag-Protective Layer for Dye-Sensitized Solar Cells," J. Kor. Ceram. Soc., 46 [3] 313-16 (2009).   과학기술학회마을   DOI
9 M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, "Low-temperature Fabrication of High-performance Metal Oxide Thin-film Electronics via Combustion Processing," Nature Mater., 10 [5] 382-88 (2011).   DOI   ScienceOn
10 B.,-Y. Kim, D.,-B. Han, and C.-W. Jeong, "Preparation of Screen Printable Conductive $MoSi_2$ Thick Films for Ceramic Sheet Heater," J. Kor. Ceram. Soc., 47 ,[4], 319-24 (2010).   과학기술학회마을   DOI
11 M. Kanungo, H. Lu, G. G. Malliaras, and G. B. Blanchet, "Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions," Science, 323 234-37 (2009).   DOI
12 T. Someya, "Printed Electronics: Nanotube Inks Make Their Mark," Nature Nanotech., 4 143-144 (2009).   DOI
13 J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, "Ightemitting Diodes Based on Conjugated Polymers," Nature, 347 539-41 (1990).   DOI
14 G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. de Leeuw, "Flexible Active-matrix Displays and Shift Registers Based on Solution-processed Organic Transistors," Nature Mater., 3 106-10 (2004).   DOI
15 W. Clemens, "Polymer Electronics," Technology Guide, 2 84-7 (2009).
16 C. W. Sele, T. vonWerne, R. H. Friend, and H. Sirringhaus, "Lithography-Free, Self-Aligned Inkjet Printing with Sub-Hundred-Nanometer Resolution," Adv. mater., 17 [8] 997-1001 (2005).   DOI
17 P. J. Yunker, T. Still1, M, A. Lohr, and A. G. Yodh, "Suppression of the Coffee-ring Effect by Shape-dependent Capillary Interactions," Nature, 476 308-11 (2011).   DOI
18 Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, "Down-scaling of Self-aligned, All-printed Polymer Thin-film Transistors," Nature Nanotech., 2 784-89 (2007).   DOI
19 T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya, "Organic Transistors Manufactured using Inkjet Technology with Subfemtoliter Accuracy," Proceedings of the National Academy of Sciences, 105 [13] 4976-80 (2008).   DOI   ScienceOn
20 M. Caironi, E. Gili, T. Sakanoue, X. Cheng, and H. Sirringhaus, "High Yield, Single Droplet Electrode Arrays for Nanoscale Printed Electronics," ACS Nano, 4 [3] 1451-56 (2010).   DOI
21 H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, "A High-mobility Electrontransporting Polymer for Printed Transistors," Nature, 457 679-86 (2009).   DOI
22 C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic Thin Film Transistors for Large area Electronics," Adv. Mater., 14 [2] 99-117 (2002).   DOI
23 B.,-J. de Gans, and U. S. Schubert, "Inkjet Printing of Polymer Micro-Arrays and Libraries: Instrumentation, Requirements, and Perspectives," Macromolecular Rapid Commun., 24 [11] 659-66 (2003).   DOI
24 F. C. Krebs, "Fabrication and processing of polymer solar cells: A Review of Printing and Coating Techniques," Solar Energy Mater. Solar Cells, 93 [4] 394-412 (2009).   DOI
25 M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, "Inkjet Printing-Process and Its Applications," Adv. Mater., 22 673-85 (2009).
26 Y.-S. Park, S. Chung, S.-J. Kim, S.-H. Lyu, J.-W. Jang, S.-K. Kwon, Y. Hong, and J.-S. Lee, "High-performance Organic Charge Trap Flash Memory Devices Based on Ink-jet Printed 6,13-bis(triisopropylsilylethynyl) Pentacene Transistors," Appl. Phys. Lett., 96 213107-9 (2010)   DOI
27 C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, "High Photovoltaic Performance of Inkjet Printed Polymer: Fullerene Blends," Adv. Mater., 19 3973-78 (2007).   DOI
28 T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, "Polymer bAsed Organic Solar Cells using Inkjet Printed Active Layers," Appl. Phys. Lett., 92 033306-8 (2008).   DOI
29 B. A. Ridley, B. Nivi, and J. M. Jacobson, "All-Inorganic Field Effect Transistors Fabricated by Printing," Science, 286 [5440] 746-49 (1999).   DOI
30 B.-J. deGans, P. C. Duineveld, and U. S. Schubert, "Inkjet Printing of Polymers: State of the Art and Future Developments," Adv. Mater., 16 [3] 203-13 (2004).   DOI
31 C. W. Tang and S. A. Van Slyke, "Organic Electroluminescent Diodes," Appl. Phys. Lett., 51 913-5 (1987).   DOI
32 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits," Science, 290 2123-26 (2000).   DOI