Browse > Article
http://dx.doi.org/10.4191/KCERS.2011.48.4.282

Effect of ACF and WO3 from ACF/WO3/TiO2 Composite Catalysts on the Photocatalytic Degradation of MO Under Visible Light  

Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University)
Song, Da-Ye (Department of Advanced Materials Science & Engineering, Hanseo University)
Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University)
Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University)
Choi, Jong-Geun (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Abstract
ACF and $WO_3$ modified $TiO_2$ composites (ACF/$WO_3$/$TiO_2$) were prepared using a sol-gel method. The composites were characterized by Brunauer.Emmett.Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and scanning electron microscope (SEM) analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of the MO was determined using UV/Vis spectrophotometry. An increase in photocatalytic activity was observed and attributed to an increase of the photo-absorption effect by the $WO_3$ and the cooperative effect of the ACF.
Keywords
$WO_3$; ACF; MO; Visible light; Photocatalytic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen, and W. C. Oh, "Effect of Pt Treated Fullerene/$TiO_2$ on the Photocatalytic Degradation of MO Under Visible Light," J. Mater. Chem., 21 7596-603 (2011).   DOI
2 A. Rampaul, I. P. Parkin, S. A. O' Neill, J. Desouza, A. Mills, and N. Elliot, "Titania and Tungsten Doped Titania Thin Films on Glass; Active Photocatalysts," Polyhedron, 22 35-44 (2003).   DOI
3 M. R. Bayati, F. G. Fard, and A. Z. Moshfegh, "Visible Photodecomposition of Methylene Blue Over Micro Arc Oxidized$WO_3$ Loaded $TiO_2$ Nanaporous Layers," Appl. Catal. A: Gen., 382 322-31 (2010).   DOI
4 J. He, Q. Z. Cai, Y. G. Ji, H. H. Luo, D. J. Li, and B. Yu, "Influence of Fluorine on the Structure and Photocatalytic Activity of $TiO_2$ Film Prepared in Tungstate-electrolyte Via Micro-arc Oxidation," J. Alloys Compd., 482 476-81 (2009).   DOI
5 K. K. Akurati, A. Vital, J. P. Dellemann, K. M. Michalow, D. Ferri, T. Graule, and A. Baiker, "Flame-made $WO_3/TiO_2$ Nanoparticles: Relation Between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B: Environ., 79 53-62 (2008).   DOI   ScienceOn
6 J. C. Parker and R. W. Siegel, "Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase, $TiO_2$," Appl. Phys. Lett., 57 943-5 (1990).   DOI
7 M. Fernandez-Garca, A. Martnez-Arias, A. Fuerte, and J. C. Conesa, "Nanostructured Ti-W Mixed-metal Oxides: Structural and Electronic Properties," J. Phys. Chem. B, 109 6075-83 (2005).   DOI
8 C. Alcober, F. Alvarez, S. A. Bilmes, and R. J. Candal, "Photochromic W-$TiO_2$ Membranes, J. Mater. Sci. Lett., 21 501-504 (2002).
9 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides," Science, 293 269-71 (2001).   DOI
10 V. Pore, M. Ritala, M. Leskela, S. Areva, M. Jarn, and J. Jarnstrom, "$H_2S$ Modified Atomic Layer Deposition Process for Photocatalytic $TiO_2$ Thin Films," J. Mater. Chem., 17 1361-71 (2007).   DOI
11 W. C. Oh, J. H. Son, F. J. Zhang, and M. L. Cheng, "Fabrication of $Ni-AC/TiO_2$ Composites and their Photocatalytic Activity for Degradation of Methylene Blue," J. Kor. Ceram. Soc., 46 [1] 1-9 (2009).   과학기술학회마을   DOI
12 Z. D. Meng, K. Zhang, and W. C. Oh, "Preparation of Different Fe Containing $TiO_2$ Photocatalysts and Comparision of Their Photocatalytic Activity," Kor. J. Mater. Re., 20 228-34 (2010).   과학기술학회마을   DOI
13 D. N. Ke, H. J. Liu, T. Y. Peng, X. Liu, and K. Dai, "Preparation and Photocatalytic Activity of $WO_3/TiO_2$ Nanocomposite Particles," Mater. Lett., 62 447-50 (2008).   DOI   ScienceOn
14 M. W. Xiao, L. S. Wang, X. J. Huang, Y. D. Wu, and Z. Dang, Synthesis and Characterization of $WO_3/titanate$ Nanotubes Nanocomposite with Enhanced Photocatalytic Properties," J. Alloys Compd., 470 486-91 (2009).   DOI   ScienceOn
15 K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Ferri, and A. Baiker, "Flame-made$WO_3/TiO_2$ Nanoparticles: Relation Between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B., 79 53-62 (2008).   DOI   ScienceOn
16 Saepurahman, M. A. Abdullah, and F. K. Chong, "Preparation and Characterization of Tungsten-loaded Titanium Dioxide Photocatalyst for Enhanced Dye Degradation," J. Hazard. Mater., 176 451-558 (2010).   DOI
17 J. Kasanen, M. Suvanto, and T. T. Pakkanen, "UV Stability of Polyurethane Binding Agent on Multilayer Photocatalytic $TiO_2$ Coating," Polymer Testing, 30 381-9 (2011).   DOI   ScienceOn
18 H. Q. Wang, Z. B. Wu, and Y. Liu, "A Simple Two-step Template Approach for Preparing Carbon-doped Mesoporous $TiO_2$ Hollow Microspheres," J. Phys. Chem. C, 113 13317-24 (2009).   DOI
19 H. Yang, R. Shi, K. Zhang, Y. Hu, A. Tang, and X. Li, "Syn-Thesis of $WO_3/TiO_2$ Nanocomposites Via Sol-gel Method," J. Alloys Compd., 398 200-202 (2005).   DOI
20 X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, "Photocatalytic Activity of $WOx-TiO_2$ under Visible Light Irradiation," J. Photochem. Photobiol. A, 141 209-17 (2001).   DOI   ScienceOn
21 E. J. Wolfrum, J. Huang, D. M. Blake, P. C. Maness, Z. Huang, J. Fiest, and W. A. Jacoby, "Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-coated Surfaces," Environ. Sci. Technol., 36 3412-19 (2002).   DOI
22 S. U. M. Khan, M. Al-Shahry, and W.B. Ingler, "Efficient Photochemical Water Splitting by a Chemically Modified n-$TiO_2$," Science, 297 2243-45 (2002).   DOI   ScienceOn
23 X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic $TiO_2$ Coating of Nanosized Particles Supported on Activated Carbon by AP-MOCVD," Carbon, 43 1700-8 (2005).   DOI
24 C. C. Chan, C. C. Chang, W. C. Hsu, S. K. Wang, and J. Lin, "Photocatalytic Activities of Pd-loaded Mesoporous $TiO_2$ Thin Films," Chem. Eng. J., 152 492-7 (2009).   DOI
25 H. Gerischer and M. Lubke, "A Particle Size Effect in the Sensitization of $TiO_2$ Electrodes by a CdS Deposit," J. Electroanal. Chem., 204 225-7 (1986).   DOI
26 T. Mori, J. Suzudi, K. Fujimoto, M. Watanabe, and Y. Hasegawa, "Reductive Decomposition of Nitrate Ion to Nitrogen in Water on a Unque Hollandite Photocatalyst," Appl. Catal. B, 23 283-89 (1999).   DOI
27 T. Sauer, G. Cesconeto Neto, H. J. Jose, and R. F. P. M. Moreira, "Kinetics of Photocatalytic Degradation of Reactive Dyes in a $TiO_2$ Slurry Reactor," J. Photochem. Photobiol. A: Chem., 149 147-54 (2002).   DOI
28 H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, and S. Ito, "A Patterned-$TiO_2/SnO_2$ Bilayer Type Photocatalyst," J. Phys. Chem. B, 104 4585-87 (2000).   DOI
29 J. G. Yu, W. Liu, and H. G. Yu, "A One-pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity," Cryst. Growth Des., 8 930-34 (2008).   DOI   ScienceOn
30 T. M. Wang, H. Y. Wang, P. Xu, X. C. Zhao, Y. L. Liu, and S. Chao, "The Effect of Properties of Semiconductor Oxide Thin Film on Photocatalytic Decomposition of Dyeing Waste Water," Thin Solid Film, 334 103-8 (1998).   DOI   ScienceOn
31 H. Kominami, A. Furusho, S. Murakami, H. Inoue, Y. Kera, and B. Ohtani, "Effective Photocatalytic Reduction of Nitrate to Ammonia in an Aqueous Suspension of Metal-loaded Titanium (IV) Oxide Particles in the Presence of Oxalic Acid," Catal. Lett., 76 31-4 (2001).   DOI   ScienceOn
32 V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, and G. L. Puma, "Enhancement of Photocatalytic Oxidation of Oxalic Acid by Gold Modified $WO_3/TiO_2$ Photocatalysts Under UV and Visible Light Irradiation," J. Mol. Catal. A: Chem., 327 51-7 (2010).   DOI
33 V. Puddu, R. Mokaya, and G. L. Puma, "Novel One Step Hydrothermal Synthesis of $TiO_2/WO_3$ Nanocomposites with Enhanced Photocatalytic Activity," Chem. Commun., 2007 4749-51 (2007).
34 J. F. Porter and Y. G. Li, "Effect of Calcinations on the Microstructural Characteristic and Photoreactivity of Degussa P-25 $TiO_2$," J. Mater. Sci., 34 1523-31 (1999).   DOI
35 V. Keller, P. Bernhardt, and F. Garin, "Photocatalytic Oxidation of Butyl Acetate in Vapor Phase on $TiO_2$, $Pt/TiO_2$ and $WO_3/TiO_2$ Catalysts," J. Catal., 215 129-38 (2003).   DOI
36 K. T. Ranjit, R. Krishnamoorthy, and B. Viswanathan, "Photocatalytic Reduction of Nitrite and Nitrate on ZnS," J. Photochem. Photobiol. A: Chem., 81 55-8 (1994).   DOI
37 T. Huang, X. P. Lin, J. C. Xing, W. D. Wang, Z. C. Shan, and F. Q. Huang, "Photocatalytic Activities of Hetero-junction Semiconductors $WO_3/SrNb_2O_6$," Mater. Sci. Eng. B, 141 49-54 (2007).   DOI
38 Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, and J. V. Weber, "UV-vis Versus Visible Degradation of Acid Orange II in a Coupled $CdS/TiO_2$ Semiconductors Suspension," J. Photochem. Photobiol. A, 183 218-24 (2006).   DOI
39 W. Xie, Y. Z. Li, W. Sun, J. C. Huang H. Xie, and X. J. Zhao, "Surface Modification of ZnO with Ag Imoroves Its Photocatalytic Efficiency and Photostability," J. Photochem. Photobiol. A: Chem., 216 2-3 (2010).
40 A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium Dioxide Photocatalysis," J. Photochem. Photobiol. C, 11-21 (2000).
41 M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chem. Rev., 95 69-96 (1995).   DOI
42 M. Asilturk, F. Saylkan, and E. Arpac, "Effect of $Fe^{3+}$ Ion Doping to $TiO_2$ on the Photocatalytic Degradation of Malachite Green Dye Under UV and Vis-irradiation," J. Photochem. Photobiol. A, 203 64-71 (2009).   DOI
43 L. A. Dibble and G. B. Raupp, "Fluidized-bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams," Environ. Sci. Technol., 28 492-95 (1992).
44 M. Andersson, L. Osterlund, S. Ljungstrom, and A. Palmqvist, "Preparation of Nanosize Anatase and Rutile $TiO_2$ by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol," J. Phys. Chem. B, 106 10674-79 (2002).   DOI
45 N. N. Lichtin, M. Avudathai, E. Berman, and A. Grayfer, "$TiO_2$-Photocatalyzed Oxidative Degradation of Binary Mixtures of Vaporized Organic Compounds," Sol. Energy, 56 377-85 (1996).   DOI
46 C. Minero, E. Pelizzetti, S. Malato, and J. Blanco, "Large Solar Plant Photocatalytic Water Decontamination: Degradation of Atrazine," Sol. Energy, 56 411-19 (1996).   DOI
47 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-8 (1972).   DOI
48 Y. X. Li and F. Wasgestian, "Photocatalytic Reductionof Nitrate Ions on $TiO_2$ by Oxalic Acid," J. Photochem. Photobiol. A: Chem., 112 255-59 (1998).   DOI
49 P. Ameta, R. Ameta, R. C. Ameta, and S. C. Ameta, "Use of Semiconductor Oxides in the Photocatalytic Reaction of Sodium Hexanitrocobaltate (III)," J. Photochem. Photobilogy A: Chem., 103 133-36 (1997).   DOI   ScienceOn