Browse > Article
http://dx.doi.org/10.4191/KCERS.2011.48.3.257

Effects of Ceramics on Dielectric Properties of Polystyrene / Ceramics Composites at Microwave Frequencies  

Jeon, Chang-Jun (Department of Materials Engineering, Kyonggi University)
Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University)
Publication Information
Abstract
Dependencies of dielectric properties on $MgTa_2O_6$, $MgNb_2O_6$, and $MgWO_4$ (Mg-based ceramics) fillers of the polystyrene (PS) matrix composites were investigated as a function of frequency. With increasing frequency from 1 GHz to 7.3 GHz, the dielectric constant (K) of the composites was not changed significantly, while the dielectric loss (tan${\delta}$) of the composites was slightly decreased. The K, tan${\delta}$, and temperature coefficient of resonant frequency (TCF) of the composites were dependent on the type and amount of ceramics at 11 GHz. Also, several theoretical models have been employed to predict the effective dielectric constant of the composites and the results were compared with experimental data. Typically, a K value of 6.67, tan${\delta}$ of $0.56{\times}10^{-3}$, and TCF of -4.99 $ppm/^{\circ}C$ were obtained for the PS composites with 0.4 volume fraction of $MgNb_2O_6$ at 11 GHz.
Keywords
Dielectric properties; Composites; Polystyrene; Mg-based ceramics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. Sihvola, “Mixing Rules with Complex Dielectric Coefficients,” Subsurface Sensing Technol. Appl., 1 393-415 (2000).   DOI
2 Y. Rao, J. Qu, T. Marinis, and C. P. Wong, “A Precise Numerical Prediction of Effective Dielectric Constant for Polymer-Ceramic Composite Based on Effective-Medium Theory,” IEEE Tran. Comp. Packaging Technol., 23 680-83 (2000).   DOI
3 H. T. Vo and F. G. Shi, “Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric Constant Modeling,” Micro. J., 33 409-15 (2002).   DOI
4 N. Jayasundere and B. V. Smith, “Dielectric Constant for Binary Piezoelectric 0-3 Composites,” J. Appl. Phys., 73 2462-66 (1993).   DOI
5 Y. M. Poon and F. G. Shin, “A Simple Explicit Formula for the Effective Dielectric Constant of Binary 0-3 Composites,” J. Mater. Sci., 39 1277-81 (2004).   DOI
6 S. George, V. N. Deepu, P. Mohanan, and M. T. Sebastian, “Influence of Ca[$(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ Filler on the Microwave Dielectric Properties of Polyethylene and Polystyrene for Microelectronic Applications,” Polym. Eng. Sci., 50 570-76 (2010).   DOI
7 R. C. Buchanan, “Ceramic Materials for Electronics,” pp. 33-43, Marcel Dekker, New York, 1986.
8 S. George and M. T. Sebastian, “Three-Phase Polymer-Ceramic-Metal Composite for Embedded Capacitor Applications,” Compos. Sci. Technol., 69 1298-302 (2009).   DOI
9 S. Yu, P. Hing, and X. Hu, “Dielectric Properties of Polystyrene-Aluminum-Nitride Composites,” J. Appl. Phys., 88 398-404 (2000).   DOI
10 P. Badheka, V. Magadala, N. G. Devaraju, B. I. Lee, and E. S. Kim, “Effect of Dehydroxylation of Hydrothermal Barium Titanate on Dielectric Properties in Polystyrene Composite,” J. Appl. Polym. Sci., 99 2815-21 (2006).   DOI
11 Z. M. Dang, Y. Zheng, and H. P. Xu, “Effect of the Ceramic Particle Size on the Microstructure and Dielectric Properties of Barium Titanate/Polystyrene Composites,” J. Appl. Polym. Sci., 110 3473-79 (2008).   DOI
12 E. S. Kim, C. J. Jeon, S. J. Kim, and S. J. Kim, “Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics,” J. Kor. Ceram. Soc., 45 [5] 251-55 (2008).   DOI
13 M. G. Grewe, T. R. Gururaja, T. R. Shrout, and R. E. Newnham, “Acoustic Properties of Particle/Polymer Composites for Ultrasonic Transducer Backing Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 37 506-14 (1990).   DOI
14 R. Inoue, Y. Odate, E. Tanabe, H. Kitano, and A. Maeda, “Data Analysis of the Extraction of Dielectric Properties from Insulating Substrates Utilizing the Evanescent Perturbation Method,” IEEE Trans. Microwave Theory Tech., 54 522-32 (2006).   DOI
15 B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech., 8 402-10 (1960).   DOI
16 T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, “Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material,” IEEE MTT-S Int. Microwave Symp. Dig., 1 277-80 (1987).
17 D. M. Iddles, A. J. Bell, and A. J. Moulson, “Relationships Between Dopants, Microstructure and the Microwave Dielectric Properties of $ZrO_2-TiO_2-SnO_2$ Ceramics,” J. Mater. Sci., 27 6303-10 (1992).   DOI
18 D. Khastgir, H. S. Maiti, and P. C. Bandyopadhyay, “Polystyrene-Titania Composites as a Dielectric Material,” Mater. Sci. Eng., 100 245-53 (1988).   DOI
19 S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, and M. T. Sebastian, “Preparation, Characterization and Properties of $Sm_2Si_2O_7$ Loaded Polymer Composites for Microelectronic Applications,” Mater. Sci. Eng., B163 67-75 (2009).