Browse > Article
http://dx.doi.org/10.4191/KCERS.2011.48.3.251

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere  

Chang, Sung-Sik (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Publication Information
Abstract
The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.
Keywords
ZnO; Optical Materials/Properties; Electron spin resonance;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 M. Liu, A. H. Kitai, and P. Mascher, “Point Defects and Luminescence Centers in Zinc Oxide and Zinc Oxide doped with Manganese,” J. Lumin., 54 35-42 (1992).   DOI
2 E. G. Bylander, “Surface Effects on Low Energy Cathodoluminescence of Zinc Oxide,” J. Appl. Phys., 49 1188-95 (1978).   DOI
3 B. X. Lin, Z. X. Fu, and Y. B. Jia, “Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates”, Appl. Phys. Lett., 79 943-45 (2001).   DOI
4 M. Schulz, “ESR Experiments on Ga Donor in ZnO Crystals,” Phys. Status Solidi (a), 27 K5-K8 (1975).   DOI
5 W. E. Carlos, E. R. Glaser, and D. C. Look, “Magnetic Resonance Studies of ZnO,” Physica B, 308-10 976-79 (2001).   DOI
6 H. Zhou, A. Hofstaetter, D. M. Hofmann, and B.K. Meyer, “Magnetic Resonance Studies on ZnO Nanocrystals,” Microelectronic Eng., 66 59-64 (2003).   DOI
7 B. Yu, C. Zhu, F. Gan, and Y. Huang, “Electron Spin Resonance Properties of ZnO Microcrystallites,” Mater. Lett., 33 247-50 (1988).
8 K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, and K. Matsushige, “Effect of Thermal Annealing of ZnO Layers grown by MBE,” J. Cryst. Growth, 214/15 312-15 (2000).   DOI
9 F. Wen, W. Li, J.-H. Moon, and J. H. Kim, “Hydrothermal Synthesis of ZnO:Zn with Green Emission at low Temperature with Reduction Process,” Solid State Commun., 135 34-7 (2005).   DOI
10 J. Q. Hu and Y. Bando, “Growth and Optical Properties of Single Crystal Tubular ZnO Whiskers,” Appl. Phys. Lett., 82 1401-4 (2003).   DOI
11 T. C. Damen, S. Sp. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev., 142 570-74 (1966).   DOI
12 J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew, and Y. F. Lu, “Effect of Deposition Conditions on Optical and Electrical Properties of ZnO Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci., 197-98 362-67 (2002).   DOI
13 W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic Emission Observed in ZnO Single Crystal Nanorods,” Appl. Phys. Lett., 82 964-66 (2004).
14 D. C. Reynolds, D. C. Look, and B. Jogai , C. W. Litton, T. C. Collins, W. Harsch, and G. C. Cantwell, “Neutral-donor Bound-excition Complexes in ZnO Nanorods,” Phys. Rev., B 57 12151-55 (1998).
15 Y. Chen, D. M. Bagnall, H.-J. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma Assited Molecular Beam Epitaxy of ZnO on c-plane Sapphire: Growth and Characterization”, J. Appl. Phys., 84 3912-18 (1998).   DOI
16 T. Sekiguchi, N. Ohashi, and Y. Yerada, “Effect of Hydrogenation in ZnO Luminescence,” Jpn. J. Appl. Phys., 36 L289-L291 (1997).   DOI   ScienceOn
17 K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between Photoluminescence and Oxygen Vacancies in ZnO Phosphor,” Appl. Phys. Lett., 68 403-5 (1996).   DOI
18 P. H. Kasai, “Electron Spin Resonance Studies of Donors and Acceptors in ZnO,” Phys. Rev., 130 989-95 (1963).   DOI
19 X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and Cathodoluminescence Studies of Stoichiometric and Oxygen Deficient ZnO Films,” Appl. Phys. Lett., 78 2285-87 (2001).   DOI
20 F. A. Korger and H. J. Vink, “Origin of Fluorescence in Self Activated-ZnS, CdS, and ZnO,” J. Chem. Phys., 22 250-52 (1954).   DOI
21 M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and Structural Investingation of ZnO Films prepared by Chemical Vapor Deposition,” Thin Solid Films, 403-4 485-88(2002).   DOI
22 S. Bethe, H. Pan, and B. W. Wessels, “Luminescence of Heteroepitaxial Zinc Oxide”, Appl. Phys. Lett., 52 138-40 (1988).   DOI
23 Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, and L. S. Wen, “Optical and Electrical Properties Direct-current Magnetron Sputtered ZnO:Al Films,” J. Appl. Phys., 90 3432-36 (2001).   DOI
24 J. Ma, F. Ji, H.-L. Ma, and S. Li, “Electrical and Optical Properties of ZnO:Al Films Prepared by an Evaporation Method,” Thin Solid Films, 279 213-15 (1996).   DOI
25 S.-S. Chang, G. J. Choi, H. J. Park, M. E. Stora, and R. E. Hummel, “UV and Green Photoluminescence from Sparkprocessed Zn,” Mater. Sci. Eng., B 83 29-34 (2001).   DOI
26 S.-S. Chang, H. J. Park, S. O. Yoon, and A. Sakai, “Luminescence Properties of Anodically Etched Porous Zn”, Appl. Surf. Sci., 158 330-34 (2000).   DOI
27 S.-S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, “Comparison of Luminescence Behavior of Spark-processed Zn and Anodically Etched Porous Zn,” Mater. Lett., 53 168-74 (2002).   DOI
28 W. S. Shi, O. Agyeman, and C. N. Xu, “Enhancement of the Light Emissions from Zinc Oxide Films by Controlling the Post-treatment Ambient,” J. Appl. Phys., 91 5640-44 (2002).   DOI
29 H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence Properties of ZnO Epilayer Grown on $CaF_2$ (111) by Plasma Assisted Molecular Beam Epitaxy,” Appl. Phys. Lett., 76 1905-7 (2000).   DOI
30 C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G.. C. Chi, “Photoluminsecence of ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy,” J. Cryst. Growth, 282 112-16 (2005).   DOI
31 S. A. Studenikin, N. Golego, and M. Cocivera, “Fabricaion of Green and Orange Photoluminescent, Undoped ZnO Films using Spray Pyrolysis,” J. Appl. Phys., 84 2287-94 (1998).   DOI