Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.4.329

The Effect of Tail State on the Electrical and the Optical Properties in Amorphous IGZO  

Bae, Sung-Hwan (Department of Materials Science and Engineering, Seoul National University)
Yoo, Il-Hwan (Department of Materials Science and Engineering, Seoul National University)
Kang, Suk-Ill (Department of Physics, Chounbuk National University)
Park, Chan (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Abstract
In order to investigate the effect of tail state on the electrical and the optical properties in amorphous IGZO(a-IGZO), a-IGZO films were deposited at room temperature on fused silica substrats using pulsed laser deposition method. The laser pulse energy was used as the processing parameter. In-situ post annealing was carried out at $150^{\circ}C$ right after the film deposition. The $O_2$ partial pressure during the deposition and the post annealing was fixed to 10mTorr. The carrier mobility of the a-IGZO films had a range from 2 to $18\;cm^2/Vs$ at carrier concentrations greater than $10^{18}\;cm^{-3}$. As the laser energy density increased, the Hall mobility increased. And post annealing improved the Hall mobility, as well. The optical property was examined using the ultraviolet-visible spectroscopy. The a-IGZO films that have low Hall mobility exhibited stronger and broader absorption tails in >3.0 eV region. Post annealing reduced the intensity of the tail-like absorption. The absorption tail in a-IGZO films is an important factor which affects the electrical and the optical properties.
Keywords
Amorphous oxide semiconductor; Thin film transistor; IGZO; Absorption tail;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High Mobility Transparent Thin-film Transistors with Amorphous Zinc Tin Oxide Channel Layer,” Appl. Phys. Lett., 86 013503 (2005).   DOI
2 H.-H. Hsieh and C.-C. Wu, “Amorphous ZnO Transparent Thin-film Transistors Fabricated by Fully Lithographic and Etching Processes,” Appl. Phys. Lett., 91 013502 (2007).   DOI
3 Y.-L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, “Room Temperature Deposited Indium Zinc Oxide Thin Film Transistors,” Appl. Phys. Lett., 90 232103 (2007).   DOI
4 H. Hosono, “Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application,” J. Non-Cryst. Solids, 352 851-58 (2006).   DOI
5 H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factors Controlling Electron Transport Properties in Transparent Amorphous Oxide Semiconductors,” J. Non-Cryst. Solids, 354 2796-800 (2008).   DOI
6 R. A. Street, Technology and Application of Amorphous Silicon, Springer, Berlin, 2000.
7 A.Takagi, K.Nomura, H.Ohta, H.Yanagi, T.Kamiya, M.Hirano, and H.Hosono, “Growth of Epitaxial ZnO Thin Films on Lattice-matched Buffer Layer: Application of $InGaO_3(ZnO)_6$ Single-crystalline Thin Film,” Thin Solid Films, 486 28-32 (2005).   DOI
8 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors,” Nature, 432 488-92 (2004).   DOI
9 E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, “Amorphous IZO TTFTs with Saturation Mobilities Exceeding 100 cm$^2$/Vs,” Phys. Status Solidi, 1 R34-8 (2007).   DOI