Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.1.019

A Kr öger-Vink Compatible Notation for Defects in Inherently Defective Sublattices  

Norby, Truls (University of Oslo, Department of Chemistry)
Publication Information
Abstract
Traditional Kr$\ddot{o}$ger-Vink (K-V) notation defines sites in ionic crystals as interstitial or belonging to host ions. It enables description and calculations of combinations of native and foreign defects, including dopants and substituents. However, some materials exhibit inherently disordered partial occupancy of ions and vacancies, or partial occupancy of two types of ions. For instance, the high temperature disordered phases of $Bi_2O_3$, $Ba_2In_2O_5$, $La_2Mo_2O_9$, mayenite $Ca_{12}Al_{14}O_{33}$, AgI, and $CsHSO_4$ are all good ionic conductors and thus obviously contain charged point defects. But traditional K-V notation cannot account for a charge compensating defect in each case, without resorting to terms like "100% substitution" or "Frenkel disorder". the former arbitrary and awkward and the latter inappropriate. Instead, a K-V compatible nomenclature in which the partially occupied site is defined as the perfect site, has been proposed. I here introduce it thoroughly and provide a number of examples.
Keywords
Defects; Kr$\ddot{o}$ger-Vink notation; Disorder; Conductivity; Perovskite; $Ba_2In_2O_5$; $Sr_2Fe_2O_5$; $Sr_4(Sr_2Nb_2)O_{11}$; $Bi_2O_3$; $CsHSO_4$; AgI; $Ca_{12}Al_{14}O_{33}$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 F. A. Kroger and H. J. Vink, “Relations Between Concentrations of Imperfections in Crystalline Solids,” pp. 307-435, Vol. 3, Solid State Physics (eds F. Seitz and D. Turnbull) Academic Press, New York, 1956.
2 F. A. Kroger, “The Chemistry of Imperfect Crystals”, pp. 1039, North-Holland, Amsterdam, 1964.
3 R. Strandbakke, C. Kongshaug, R. Haugsrud, and T. Norby, “High-Temperature Hydration and Conductivity of Mayenite, $Ca_{12}Al_{14}O_3$,” J. Phys. Chem. C, 113 [20] 8938-44 (2009).   DOI
4 R. Bredesen and T. Norby, “On Phase Relations, Transport Properties and Defect Structure in Mixed Conducting $SrFe_{1.5-x}Co_xO_z$,” Solid State Ionics, 129 [1-4] 285-97 (2000).   DOI
5 R. Bredesen, T. Norby, A. Bardal, and V. Lynum, “Phase Relations, Chemical Diffusion and Electrical Conductivity in Pure and Doped $Sr_4Fe_6O_{13}$ Mixed Conductor Materials,” Solid State Ionics, 135 [1-4] 687-97 (2000).   DOI
6 R. Haugsrud, “Defects and Transport Properties in $Ln_6WO_{12}$ (Ln = La, Nd, Gd, Er),” Solid State Ionics, 178 [7-10] 555-60 (2007).   DOI
7 S. Noirault, S. Celerier, O. Joubert, M.T. Caldes, and Y. Piffard, “Incorporation of Water and Fast Proton Conduction in the Inherently Oxygen-deficient Compound $La_{26}O_{27}(BO_3)_8$,” Adv. Mater., 19 [6] 867-70 (2007).   DOI
8 L. W. Strock, “Kristallstruktur des Hochtemperatur-Jodsilbers $\alpha$-AgJ,” Z. Phys. Chem., B25 441-59 (1934).
9 N. Sharova, H. Fjellvag, and T. Norby, “Structure, Defect Chemistry, and Proton Conductivity in Nominally Srdoped $Ba_3La(PO_4)_3$,” Solid State Ionics, 180 [4-5] 338-42 (2009).   DOI
10 L. W. Strock, “Erganzung und Berichtigung zu: "Kristallstruktur des Hochtemperatur-Jodsilbers $\alpha$-AgJ,” Z. Phys. Chem., B31 132-36 (1935).
11 P. Rahlfs, “Uber die Kubischen Hochtemperaturemodifikationen der Sulfide, Selenide und Telluride des Silbers und des Einwertigen Kupfers,” Z. Phys. Chem., B31 157-94 (1936).