Browse > Article
http://dx.doi.org/10.4191/KCERS.2009.46.6.695

Transfer of Oxygen Vacancy and Proton in Y-doped BaZrO3  

Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education)
Park, Jong-Sung (Center for Energy Materials Research, Korea Institute of Science and Technology)
Kim, Byung-Kook (Center for Energy Materials Research, Korea Institute of Science and Technology)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Abstract
We studied the transfer of oxygen vacancy and proton in Y-doped BaZr$O_3$ (BYZ) using density functional theory (DFT). An oxygen vacancy was generated in the $2{\times}2{\times}2$ BYZ superstructure by replacing two Zr atoms with two Y atoms to satisfy the charge neutrality condition. The O vacancy transfer between the first and second nearest O atom sites from a Y atom showed the lowest activation energy barrier of 0.42 eV, compared to the other transfers between first and first, and second and second in the superstructure. Two protons were inserted in the structure by adding a proton and hydroxyl that were supplied by the dissociation of a water molecule. The two protons bonded to the first and second nearest O atoms were energetically the most favorable. The activation energy barrier for a proton transfer in the structure was 0.51 eV, when either proton transferred to its neighbor O atom. This value was well matched with the experimentally determined one.
Keywords
Proton conductor; Perovskite oxide; BaZrO$_3$; BYZ; Computer simulation;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo, and J. M. Kiat, “Meta-generalized Gradient Approximation for the Exchange-correlation Hole with an Application to the Jellium Surface Energy,” Phys. Rev. B, 73 [20] 205104-14 (2005)   DOI   ScienceOn
2 M. A. Gomez, M. A. Griffin, S. Jindal, K. D. Rule, and V. R. Cooper, “The Effect of Octahedral Tilting on Proton Binding Sites and Transition States in Pseudo-cubic Perovskite Oxide,” J. Chem. Phys., 123 [9] 094703-10 (2005)   DOI   ScienceOn
3 M. E. Bjorketun, P. G. Sundell, G. Wahnstrom, and D. Engberg, “A Kinetic Monte Carlo Study of Proton Diffusion in Disordered Perovskite Structured Lattices Based on Firstprinciples Calculations,” Solid State Ionics, 176 [39-40] 3035-40 (2005)   DOI   ScienceOn
4 M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, “Structure and Thermodynamics Stability of Hydrogen Interstitials in $BaZrO_3$ Perovskite Oxide from Density Functional Calculations,” Faraday Discuss., 134 247-65 (2007)   DOI   ScienceOn
5 P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, “Thermodynamics of Doping and Vacancy Formation in $BaZrO_3$ Perovskite Oxide from Density Functional Calculations,” Phys. Rev. B, 73 [10] 104112-21 (2006)   DOI   ScienceOn
6 M. Karlsson, M. E. Bjorketun, P. G. Sundell, A. Matic, G. Wahnstrom, D. Engberg, L. Borjesson, I. Ahmed, S. Eriksson, and P. Berastegui, “Vibrational Properties of Protons in Hydrated $BaIn_xZr_{1-x}O_{3-x/2}$,” Phys. Rev. B, 72 [9] 094303-09 (2005)   DOI   ScienceOn
7 T. Norby, M. Widere, R. Gluckner, and Y. Larring, “Hydrogen in Oxides,” Dalton Trans., 19 [7] 3012-18 (2004)
8 T. Matzke, U.Stimming, C. Karmonik, M. Soetrantmo, R. Hempelmann, and F. Guthoff, “Quasielastic Thermal Neutron Scattering Experiment on the Proton Conductor $SrCe_{0.95}Yb_{0.05}H_{0.02}O_{2.985}$,” Solid State Ionics, 86-88 [1] 621-28 (1996)   DOI   ScienceOn
9 G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B., 47 [1] 558-61 (1993); “Ab initio molecular-dynamics simulation of the liquid-metal. amorphous-semiconductor transition in germanium,” Phys. Rev. B., 49 [20] 14251-69 (1994)   DOI   ScienceOn
10 G. Kresse and J. Furthuller, “Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set,” Comput. Mat. Sci., 6 [1] 15-50 (1996)   DOI   ScienceOn
11 G. Kresse and J. Furthuller, “Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set,” Phys. Rev. B., 54 [16] 11169-86 (1996)   DOI   ScienceOn
12 D. Vanderbilt, “Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism,” Phys. Rev. B., 41 [11] 7892-95 (1990)   DOI   ScienceOn
13 B. Merinov and W. Goddard III, “Proton Diffusion Pathways and Rates in Y-doped $BaZrO_3$ Solid Oxide Electrolyte from Quantum Mechanics,” J. Chem. Phys., 130 [19] 194707-12 (2009)   DOI   ScienceOn
14 H. Iwahara, H. Uchida, and S. Tanaka, “High Temperature Type Proton Conductor Based on $SrCeO_3$ and Its Application to Solid Electrolyte Fuel Cell,” Solid State Ionics, 9 [10] 1021-25 (1983)   DOI   ScienceOn
15 G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method,” Phys. Rev. B., 59 [3] 1758-75 (1999)   DOI   ScienceOn
16 D. M. Wood and A. Zunger, “A New Method for Diagonalising Large Matrices,” J. Phys. A., 18 [9] 1343-59 (1985)   DOI   ScienceOn
17 P. Pulay, “Convergence Acceleration in Iterative Sequences: The Case of SCF Iteration,” Chem. Phys. Lett., 73 [2] 393-98 (1980)   DOI   ScienceOn
18 D. Sheppard, R. Terrell, and G. Henkelman, “Optimization Methods for Finding Minimum Energy Paths,” J. Chem. Phys. 128 [13] 134106-15 (2008)   DOI   ScienceOn
19 M. Winterer, R. Nitsche, and H. Hahn, “Local Structure in Nanocrytalline $ZrO_2$ and $Y_2O_3$ by EXAFS,” Nanostruc. Mater., 9 397-400 (1997)   DOI   ScienceOn
20 H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides Based on $BaCeO_3$,” J. Electrochem. Soc., 135 [2] 529-33 (1988)   DOI   ScienceOn
21 K.-D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, “Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications,” Solid State Ionics, 145 [1-4] 295-306 (2001)   DOI   ScienceOn
22 H. G. Bohn and T. Schober, “Electrical Conductivity of the High-temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O+{2.95}$,” J. Am. Ceram. Soc., 83 [4] 768-72 (2000)   DOI   ScienceOn
23 S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskite,” J. Mater. Sci., 36 [5] 1149-60 (2001)   DOI   ScienceOn
24 W. G. Coors and D. W. Readey, “Proton Conductivity Measurements in Yttrium Barium Cerate by Impedance Spectroscopy,” J. Am. Ceram. Soc., 85 [11] 2637-40 (2002)   DOI   ScienceOn
25 R. W. G. Wyckoff, Inorganic Compounds, pp. 181-85, Wiley, New York 1964
26 K. D. Kreuer, “Proton-conducting Oxides,” Annu. Rev. Mater. Res., 33 333-59 (2003)   DOI   ScienceOn
27 M. T. Sebastian, Dielectric Materials for Wireless Communication, pp. 161-204, Elsevier, Amsterdam, 2008