Browse > Article
http://dx.doi.org/10.4191/KCERS.2008.45.9.512

Synthesis and Characterization of Yttrium-doped Core-Shell SiO2 Nanoparticles by Reverse Micelle and Sol-gel Processing  

Kim, Jun-Seop (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
Chu, Min-Cheol (Korea Research Institute of Standard and Science)
Cho, Seong-Jai (Korea Research Institute of Standard and Science)
Bae, Dong-Sik (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
Publication Information
Abstract
In this study, yttrium-doped $SiO_2$ nanoparticles are synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Spherical Y-doped $SiO_2$ nanoparticles with a uniform size distribution are prepared using selfassembly molecules in conjunction with the hydrolysis and condensation of organometallic precursors. The water/surfactant molar ratio influenced the Y-doped $SiO_2$ particles distribution of the core-shell composite particles and the distribution of Y doped $SiO_2$ particles was broadened as the water to surfactant ratio increased. The particle size of Y increase linearly as the $Y(NO_3)_3$ solution concentration increased. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The effects of synthesis parameters, such as the molar ratio of water to surfactant and the molar ratio of water to TEOS, are discussed.
Keywords
Yttrium-doped $SiO_2$ particles; Nanoparticles; Reverse micelle; Sol-Gel Processing;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Le. Bars, U. Specht, J.S. Bradley, and D. G. Blackmond, "A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions," Langmuir, 15 7621-25 (1999)   DOI   ScienceOn
2 Y. Li, X.M. Hong, D.M. Collard, and M.A. El-Sayed, "Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution," Org. Lett., 2 2385-88 (2000)   DOI   ScienceOn
3 Y. Li and M.A. El-Sayed, "The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution," J. Phys. Chem. B, 105 8938-43 (2001)   DOI   ScienceOn
4 J. Dai and M.L. Bruening, "Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films," Nano Lett., 2 497-501 (2002)   DOI   ScienceOn
5 J. W. Yoo, D. Hathcock, and M. A. El-Sayed, "Characterization of pt Nanoparticles Encapsulated in $Al_2O_3$ and Their Catalytic Efficiency in Propene Hydrogenation," J. Phys. Chem. A, 106 2049-54 (2002)   DOI   ScienceOn
6 P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, "Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation," J. Phys. Chem. B, 103 8706-10 (1999)   DOI   ScienceOn
7 C. A. Mirkin, R. L. Letsinger, and R. C. Mucic, "A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials," J. J. Storhoff, Nature, 382 607-09 (1996)   DOI   ScienceOn
8 M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules," Nat. Biotechnol., 19 631-35 (2001)   DOI   ScienceOn
9 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices," Science, 287 1989-92 (2000)   DOI   ScienceOn
10 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Ateater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater., 19 1501-05 (2001)   DOI   ScienceOn
11 G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer, Berlin, 1994
12 G.M. Schmid, "Large Clusters and Colloids, and Metals in the Embryonic State," Chem. Rev., 92 1709-27 (1992)   DOI
13 T.Kokugan, A. Trianto, and H. Takeda, "Dehydrogenation of Pure Cyclohexane in the Membrane Reactor and Prediction of Conversion by Pseudo Equilibrium Model," J. Chem. Eng. Jpn., 31 596-603 (1998)   DOI   ScienceOn
14 T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, "Phosphor Materials for Cathode-ray Tubes," Adv. Electron. Phys., 79 271 (1990)   DOI
15 Y. Wang and N. Herron, "Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties," J. Phys. Chem., 95 525-532 (1991)   DOI
16 Y.M. Tricot and J.H. Fendler, "In Situ Generated Colloidal Semiconductor CdS Particles in Dihexadecyl Phosphate Vesicles: Quantum Size and Asymmetry Effects," J. Phys. Chem., 90 3369-74 (1986)   DOI
17 N. F. Borelli, D. W. Hall, J. H. Holland, and W. D. Smith, "Photoluminescence and Relaxation Dynamics of CdS Superclusters in Zeolites," J. Phys. Chem., 92 4988-494 (1988)   DOI   ScienceOn
18 J. M. Nam, S. J. Park, and C. A. Mirkin, "Bio-Barcodes Based on Oligonucleotide-Modified Nanoparticles," J. Am. Chem. Soc., 124 3820-21 (2002)   DOI   ScienceOn
19 R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger, "Homogeneous, Nanoparticle-based Quantitative Colormetric Detection of Oligonucleotides," J. Am. Chem. Soc., 122 3795-96 (2000)   DOI   ScienceOn
20 D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, S. C. Williams, and A. Alivisatos, "Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings," J. Phys. Chem. B, 106 11758-763 (2002)   DOI   ScienceOn
21 Micheli AL, Dungan DF, and Martese JV., "High-Density Yttria for Practical Ceramic Applications," J. Am. Ceram. Soc., 75 709-711 (1992)   DOI
22 Roy S, Sigmund W, and Aldinger F, "Grain Modification in Y2O3 Powders Coarse to Nanoporous," J. Mat. Sc. Lett., 16 1148-50 (1997)
23 A. E. Neeves and M. H. Birnboim, "Composite Structures for the Enhancement of Nonlinear-optical Susceptibility," J. Opt. Soc. Am. B, 6 787-96 (1989)   DOI
24 T. Li, J. J. Mecholsky, D.R.Talham, and J.H.Adair, "Preparation of Ag/$SiO_2$ Nanosize Composites by a Reverse Micelle and Sol-Gel Technique," Langmuir, 15 4328-34 (1999)   DOI   ScienceOn
25 K. Osseo-Asare and F.J. Arrigada, "Synthesis of Nanosize Particles in Reverse Microemulsions," Ceramic Trans, 12 6-16 (1990)
26 Y. Wang and W. Mahler, "Degenerate Four-wave Mixing of CdS/polymer Composite," Opt. Comm., 61 233-36 (1987)   DOI   ScienceOn
27 W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim, "Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays," J. Phys. Chem. B, 104 8925-30 (2000)   DOI   ScienceOn
28 S. Chen, Y. Yang, "Magnetoelectrochemistry of Gold Nanoparticle Quantized Capacitance Charging," J. Am. Chem. Soc., 124 5280-81 (2002)   DOI   ScienceOn
29 G. De, L. Tapler. G. Battaglin , F. Caccavale, F. Gonella, P. Mazzoldi, and R.F.Haglund Jr., "Formation of Copper and Silver Nanometer Dimension Clusters in Silica by the Solgel Process," Appl. Phys. Lett., 68 3820-22 (1996)   DOI   ScienceOn
30 N. Ichinose, "Introduction to Fine Ceramics," p. 3, Wiley, New York, 1987
31 N. Ichinose, Y. Ozaki, and S. Kashu, "Superfine Particle Technology," p. 24, Springer-Verlag, New York, 1988
32 C. J. Brinker and G. W. Scherer, "Sol-Gel Science Academic Press," p.2 , San Diego, 1990
33 J. Vanherle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, "Low-Temperature Fabrication of (Y,Gd, Sm)-Doped Ceria Electrolyte," Solid State Ionics, 86-90 1255-58 (1996)
34 R. W. G. Wyckoff, Cryst. Struc., p. 4, vol. 2, Interscience, New York, 1964