Browse > Article
http://dx.doi.org/10.4191/KCERS.2005.42.4.276

Electrochemical Properties of LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ Synthesized by Combustion Method  

Kwon, Ikhyun (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
Song, Myoungyoup (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
Publication Information
Abstract
$LiNi_{1-y}M_{y}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+},\;0.000\{\le}y{\le}0.100)$ were synthesized by the combustion method by calcining in $O_{2}$ stream at $750^{\circ}C$ for 36 h. XRD analyses, observation by FE-SEM and measurement of the variation of discharge capacity with the number of cycles were carried out. The composition $LiNi_{0.99}M_{0.01}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+})$ of all the compositions showed relatively good electrochemical properties. $LiNi_{0.99}M_{0.01}O_{2}$ exhibited poor crystallinity and $LiNi_{0.99}M_{0.01}O_{2}$ showed the cation mixing of large fraction. $LiNi_{0.99}M_{0.01}O_{2}$ with improved cycling performance showed good crystallinity and the cation mixing of small fraction.
Keywords
Combustion method; Discharge capacity; Cycling performance; Crystallinity; Cation mixing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Yoshio, H. Tanaka, K. Tominaga, and H. Noguchi, ' Synthesis of $LiCoO_{2}$ from Cobalt-Organic Acid Complexes and Its Electrode Behaviour in a Lithium Secondary Battery,' J. Power Sources, 40 347-53 (1992)   DOI   ScienceOn
2 K. Ozawa, ' Lithium-Ion Rechargeable Batteries with $LiCoO_{2}$ and Carbon Electrodes: The $LiCoO_{2}$/C System,' Solid State Ionics, 69 212-21 (1994)   DOI   ScienceOn
3 M. Y. Song, H. Rim, E. Y. Bang, S. G Kang, and S. H. Chang, 'Synthesis of Cathode Materials $LiNi_{1-y}Co_{y}O_{2}$ from Various Starting Materials and Their Electrochemical Properties,' J. Kor. Ceram. Soc., 40 [6] 507-12 (2003)   DOI   ScienceOn
4 J. R. Dahn, U. von Sacken, M. R. Jukow, and H. AI-Janaby, ' Rechargeable $LiNiO_{2}$/Carbon Cells,' J. Electrochem. Soc., 138 2207-11 (1991)   DOI
5 G. Pistoia and G. Wang, ' Aspects of the $Li^+$ Insertion into $Li_{x}Mn_{2}O_{4}$ for 0   DOI   ScienceOn
6 A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, ' Synthesis and Structural Aspects of $LiMn_{2}O_{4}$+/-delta as a Cathode for Rechargeable Lithium Batteries,' J. Electrochem. Soc., 142 2149-55 (1995)   DOI   ScienceOn
7 Y. Gao and J. R. Dahn, ' Synthesis and Characterization of $Li_{1+x}Mn_{2-x}O_{4}$ for Li-Ion Battery Applications,' J. Electrochem. Soc., 143 100-13 (1996)   DOI
8 T. Ohzuku and A. Ueda, ' Solid-State Redox Reactions of $LiCoO_{2}$(R3m) for Four-Volt Secondary Lithium Cells,' J. Electrochem. Soc., 141 2972-77 (1991)   DOI   ScienceOn
9 I. H. Kwon, ' A Study on the Synthesis and the Electrochemical Properties of Cathode Materials $LiNi_{1-y}M_{y}O_{2}$ (M=Zn, AI, Ti, and Fe) by the Combustion Method for Lithium Secondary Battery,' Ph D. Thesis, Chonbuk National University, 2005
10 J. N. Reimer and J. R. Dahn, 'Electrochemical and in Situ X-Ray Diffraction Studies of Lithium Intercalation in $Li_{x}CoO_{2}$,' J. Electrochem. Soc., 139 2091-96 (1992)   DOI
11 H. Rim, S. G. Kang, S. H. Chang, and M. Y. Song, ' A Study on the Synthesis and the Electrochemical Properties of $LiNi_{1-y}Co_{y}O_{2}$ from $Li_{2}CO_{3}$, $NiCO_{3}$, and $CoCO_{3}$,' J. Kor. Ceram. Soc., 38 [6] 515-21 (2001)
12 J. M. Tarascon, D. Guyomard, and G. L. Baker, ' An Update of the Li Metal-Free Rechargeable Battery Based on $Li_{1+x}Mn_{2}O_{4}$ Cathodes and Carbon Anodes,' J. Power Sources, 44 689-700 (1993)   DOI   ScienceOn
13 M. Y. Song and R. Lee, ' Synthesis by Sol-Gel Method and Electrochemical Properties of $LiNiO_{2}$ Cathode Material for Lithium Secondary Battery,' J. Power Sources, 111 [1] 97-103 (2002)   DOI   ScienceOn
14 M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, ' Lithium Insertion into Manganese Spinels,' Mat. Res. Bull., 18 461-72 (1983)   DOI   ScienceOn
15 M. M. Thackeray, P. J. Johnson, and L. A. de Picciotto, ' Electrochemical Extraction of Lithium from $LiMn_{2}O_{4}$,' Mat. Res. Bull., 19 179-87 (1984)   DOI   ScienceOn
16 A. Momchilov, V. Manev, and A. Nassalevska, ' Rechargeable Lithium Battery with Spinel-Related $MnO_{2}$ II. Optimization of the $LiMn_{2}O_{4}$ Synthesis Conditions,' J. Power Sources, 41 305-14 (1993)   DOI   ScienceOn
17 D. H. Jang, Y. J. Shin, and S. M. Oh, ' Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/$Li_{x}Mn_{2}O_{4}$ Cells,' J. Electrochem. Soc., 143 2204-10 (1996)   DOI   ScienceOn
18 T. Ohzuku, M. Kitagawa, and T. Hirai, ' Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell (III) X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide,' J. Electrochem. Soc., 137 769-74 (1990)   DOI
19 Y. Xia and M. Yoshia, ' An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds,' J. Electrochem. Soc., 143 825-33 (1996)   DOI
20 Z. Jiang and K. M. Abraham, ' Preparation and Electrochemical Characterization of Micron-Sized Spinel $LiMn_{2}O_{4}$,' J. Electrochem. Soc., 143 1591-97 (1996)   DOI   ScienceOn
21 D. S. Ahn and M. Y. Song, ' Variations of the Electrochemical Properties of $LiMn_{2}O_{4}$ with Synthesis Conditions,' J. Electrochem. Soc., 147 [3] 874-79 (2002)   DOI   ScienceOn
22 M. Y. Song, I. H. Kwon, and M. S. Shon, ' Electrochemical Properties of $LiNi_{y}Mn_{2-y}O_{4}$ Prepared by the Solid-State Reaction,' J. Kor. Ceram. Soc., 40 [5] 401-04 (2003)   DOI   ScienceOn
23 T. Ohzuku and A. Ueda, ' Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries,' Solid State Ionics, 69 201-11 (1994)   DOI   ScienceOn
24 B. Scrosati, ' Lithium Rocking Chair Batteries: An Old Concept?,' J. Electrochem. Soc., 139 2776-80 (1992)   DOI
25 K. Brandt, ' Historical Development of Secondary Lithium Batteries,' Solid State Ionics, 69 173-83 (1994)   DOI   ScienceOn