Browse > Article
http://dx.doi.org/10.4191/KCERS.2005.42.1.050

Development of High-Efficient Small Euel Cells : I. Synthesis of Organic-Inorganic Nanocomposite Electrolyte Membranes  

Park, Yong-Il (School of Materials and System Engineering, Kumoh National Institute of Technology)
Moon, Joo-Ho (School of Advanced Materials Science and Engineering, Yonsei University)
Kim, Hye-Kyung (Samsung Advanced Institute of Technology)
Kim, Suk-Hwam (School of Materials and System Engineering, Kumoh National Institute of Technology)
Publication Information
Abstract
New fast proton-conducting organic-inorganic nanocomposite membranes were successfully fabricated using polymer matrix obtained through proper oxidation of thiol ligands in (3-Mercaptopropyl) trimethoxysilane (MPTS) and hydrolysis/condensation reaction of (3-glycidoxypropyl) trimethoxysilane (GPTS). The obtained nanocomposite membranes showed relatively hirh proton-conductivity over $10^{-2}S/cm$ at $ 25^{circ}C$. The proton conductivities of the fabricated composite membranes increased up to $3.6{\times}10^{-1}$ S/cm cm by increasing temperature and relative humidity to $70^{circ}C$ and 100 $100RH\%$. The high proton conductivity of the composites Is due to the proton conducting path through the GPTS-derived 'pseudo-polyethylene oxide 'network in which sulfonic acid ligands work as a proton donor.
Keywords
Nanocomposite; Electrolyte; Fuel cell; Proton conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Nagy, G. A. Gerhardt, A. F. Oke, R. N. Adams, R. B. Moore, M. N. Szentirmay, and C. R. Martin, 'Ion Exchange and Transport of Neurotransmitters in Nafion Films on Conventional and Microelectrode Surfaces,' J. Electroanal. Chem., 189 85-94 (1985)   DOI   ScienceOn
2 J. Baur, E. W. Kristensen, L. J. May, D. J. Wiedemann, and R. M. Wightman, 'Fast-Scan Voltammetry of Biogenic Amines,' Anal. Chem., 60 1268-72 (1988)   DOI   ScienceOn
3 H. Gunasingham and C. Tan, 'Platinum-Dispersed Nafion Film Modified Glassy Carbon as an Electrocatalytic Surface for an Amperometric Glucose Enzyme Electrode,' Analyst, 114 695-98 (1989)   DOI
4 D. J. Harrison, R. F. B. Turner, and H. P. Bates, 'Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood,' Anal. Chem., 60 2002-07 (1988)   DOI   ScienceOn
5 J. Herranen, J. Kinnunen, B. Mattsson, H. Rinne, F. Sundholm, and L. M. Torell, 'Characterisation of Poly(Ethylene Oxide) Sulfonic Acids,' Solid State Ionics, 80 201-12 (1995)   DOI   ScienceOn
6 A. Brodin, B. Mattsson, K. Nilsson, L. M. Torell, and J. Hamara, 'Ionic Configurations in PEO Based Electrolytes Endcapped by $CH_3$-, OH-, and $SO_3$-Groups,' Solid State Ionics, 85 111-20 (1996)   DOI   ScienceOn
7 B. Mattsson, A. Brodin, L. M. Torell, H. Rinne, J. Hamara, F. Sundholm, and P. Jacobsson, 'Raman Scattering Investigations of PEO and PPO Sulphonic Acids,' Solid State Ionics, 97 309-14 (1997)   DOI   ScienceOn
8 B. Riegel, S. Blittersdorf, W. Kiefer, S. Hofacker, M. MUller, and G. Schottner, 'Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyltrimethoxysilane/Aminopropyltriethoxy-Silane System by Means of FT-Raman Spectroscopy I,' J. Non-Cryst. Solids, 226 76-84 (1998)   DOI   ScienceOn
9 E. W. Kristensen, W. G. Khur, and R. M. Wightman, 'Temporal Characterization of Perfluorinated Ion-Exchange Coated Microvoltammetric Electrodes for In Vivo Use,' Anal. Chem., 59 1752-57 (1987)   DOI   ScienceOn
10 Y. G. Hsu and J. H. Huang, 'Model Reaction of Epoxy-Containing Siloxane,' J. Non-Cryst. Solids, 208 259-66 (1996)   DOI   ScienceOn
11 G. Philipp and H. Schimidt, 'The Reactivity of $TiO_2$ and $ ZrO_2$ in Organically Modified Silicates,' J. Non-Cryst. Solids, 82 31-6 (1986)   DOI   ScienceOn
12 R. C. T. Slade and J. R. Varcoe, 'Proton Conductivity in Siloxane and Ormosil Ionomers Prepared Using Mild Sulfonation Methodologies,' Solid State lonics, 145 127-33 (2001)   DOI   ScienceOn
13 G. Philipp and H. Schimidt, 'New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol-Gel Process,' J. Non-Cryst. Solids, 63 283-92 (1984)   DOI   ScienceOn
14 Y.-I. Park and M. Nagai, 'Proton-Conducting Properties of Inorganic-Organic Nanocomposites:Proton Exchange Nanocomposite Membranes Based on 3-Glycidoxypropyltrimethoxysilane and Tetraethylorthosilicate,' J. Electrochem. Soc., 148 [6] A616-23 (2001)   DOI   ScienceOn
15 Y.-I. Park and M. Nagai, 'Proton Exchange Nanocomposite Membranes Based on 3-Glycidoxypropyltrimethoxysilane, Silicotungstic Acid and $\alpha$-Zirconium Phosphate Hydrate,' Solid State Ionics, 145 149-60 (2001)   DOI   ScienceOn
16 P. J. Evans, R. C. T. Slade, J. R. Varcoe, and K. E. Young, 'Realisation of Siloxane Ionomers by Mild Oxidation of Alkylmercaptosiloxanes,' J. Mater. Chem., 9 3015-21 (1999)   DOI   ScienceOn
17 W. M. Van Rhijin, D. E. De Vos, B. F. Sels, W. D. Bossaert, and P. A. Jacobs, 'Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions,' Chem. Commun., 317-18 (1998)
18 Y. Abe, 'Fast Proton Conductions in Glasses,' Proceedings of XVII International Congress on Glasses, 1 105 (1995)
19 B. Hoyer, T. M. Florence, and G. E. Bately, 'Application of Polymer-Coated Glassy Carbon Electrodes in Anodic Stripping Voltammetry,' Anal. Chem., 59 1608-14 (1987)   DOI   ScienceOn
20 K. W. Wilson, A. F. Lee, D. J. Macquarrie, and J. H. Clark, 'Structure and Reactivity of Sol-Gel Sulphonic Acid Silicas,' Appl. Catal. A-Gen., 228 127-33 (2002)   DOI   ScienceOn