Browse > Article
http://dx.doi.org/10.4191/KCERS.2005.42.12.800

Polarization Resistance of (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ Air Electrode Synthesized by Glycine-Nitrate Process  

Moon, Ji-Woong (Korea Institute of Ceramic Engineering and Technology)
Lim, Yong-Ho (Korea Institute of Ceramic Engineering and Technology, School of Materials Science and Engineering, Inha University)
Oh, You-Keun (Korea Institute of Ceramic Engineering and Technology)
Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology)
Choi, Byung-Hyun (Korea Institute of Ceramic Engineering and Technology)
Hwang, Hae-Jin (School of Materials Science and Engineering, Inha University)
Publication Information
Abstract
Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$, for low temperature SOFC was prepared by the Glycine-Nitrate synthesis Process (GNP). Characteristics of the synthesized powders were studied with controlling the pH of a precursor solution. Highly acidic precursor solution increased a perovskite forming temperature. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with H+ insead of alkaline earth cations. A lack of bond between cations and glycine resulted in selective precipitation of the elements during evaporation of the precursor solution. In case of using precursor solution with pH %2\~3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}{\cdot}cm^2\;and\;0.16{\Omega}{\cdot}cm^2$, respectively.
Keywords
SOFC; BSCF; Glycine-Nitrate process; Cathode; Polarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.-L. Wen, D. Wang, H. Y Tu, M. Chen, Z. Zhang, H. Nie, and W. Huang, 'Research on Planar SOFC Stack,' Solid State Ionics, 152-153 399-404 (2002)   DOI   ScienceOn
2 H. Wang, C. Tablet, A. Fe1dhoff, and J. Caro, 'Investigation of the Phase Structure, Sintering, and Permeability of Perovskite-Type Membrane,' J Membrane Sci., in printing
3 N. Q. Minh, 'High Temperature Fuel Cells. Part II : The Solid Oxide Fuel Cell,' Chemtech., 21 120-26 (1991)
4 N. Q. Minh, 'Ceramic Fuel Cell,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993)   DOI
5 D. Simwonis, A. Naoumidis, F. J. Dias, J. Linke, and A. Morpoulou, 'Material Chracterization in Support of the Development of an Anode Substrate for Solid Oxide Fuel Cells,' J Mater. Res., 12 1508-18 (1997)   DOI   ScienceOn
6 W. Z. Zhu and S. C. Deevi, 'Opportunity of Metallic Interconnects for Solid Oxide Fuel Cells: A States on Contact Resistance,' Mater. Res. Bull., 38 957-72 (2003)   DOI   ScienceOn
7 M. J. Jcrgensen, S. Primdahl, C. Bagger, and M. Mogensen, 'Effect of Sintering Temperature on Microstructure and Performance of LSM- YSZ Composite Cathodes,' Solid State Ionics, 139 [1-2] 1-11 (2001)   DOI   ScienceOn
8 J. D. Kim, G D. Kim, J. W. Moon, Y-I. Park, H.-W. Lee, K. Kobayashi, M. Nagai, and C.-E. Kim, 'Characterization of LSM-YSZ Composite Electrode by AC Impedance Spectroscopy,' Solid State Ionics, 143 [3-4] 379-89 (2001)   DOI   ScienceOn
9 T. Tsai and S. A. Barnett, 'Effect of LSM- YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance,' Solid State Ionics, 93 [3-4] 207-12 (1997)   DOI   ScienceOn
10 M. Godickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, 'Perovskite Cathodes for Solid Oxide Fuel Cells Based on Ceria Electrolytes,' Solid State Ionics, 86-88 691-701 (1996)   DOI   ScienceOn
11 H. Wang, Y. Cong, and W. Yang, 'Oxygen Permeation Study in a Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ Oxygen Permeable Membrane,' J Membrane Sci., 210 259-71 (2002)   DOI   ScienceOn
12 Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, and G. Xiong 'Investigation of the Permeation Behavior and Stability of a $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ Oxygen Membrane,' J Membrane Sci., 172 177-88 (2000)   DOI   ScienceOn
13 Z. Shao, G. Xiong, H. Dong, W. Yang, and L. Lin, 'Synthesis, Oxygen Permeation Study and Membrane Performance of a $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ Oxygen-Permeable Dense Ceramic Reactor for Partial Oxidation of Methane to Syngas,' Separation and Purification Technology, 25 97-116 (2001)   DOI   ScienceOn
14 Z. Shao and S. Haile, 'A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells,' Nature, 43 170-73 (2004)
15 L. A. Chick, G D. Maupin, and L. R. Pederson, 'Glycinenitrate Synthesis of a Ceramic-Metal Composite,' Nanostructured Mater., 4 [5] 603-15 (1994)   DOI   ScienceOn
16 L. A. Chick, L. R. Pederson, G D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, 'Glycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders,' Mater. Lett., 10 [12] 6-12 (1990)   DOI   ScienceOn
17 Y-J. Yang, T.-L. Wen, H. Tu, D.-Q. Wang, and J. Yang, 'Characteristics of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process,' Solid State Ionics, 135 [1-4] 475-79 (2000)   DOI   ScienceOn
18 S. J. Skinner, 'Recent Advances in Perovskite-Type Materials for Solid Oxide Fuel Cell Cathodes,' Int. J Inorganic Mater., 3 [2] 113-21 (2001)   DOI   ScienceOn
19 L. Stryer, Biochemistry, Ch 2. 'Protein Structure and Function, pp 15-42, H. Freeman and Company, NY, 1988
20 A. Esquirol, J. Kilner, and N. Brandon, 'Oxygen Transport in $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}/Ce_{0.8}Ge_{0.2}O_{2-x}$ Composite Cathode or IT-SOFCs,' Solid State lonics, 175 [1-4] 63-7 (2004)   DOI   ScienceOn