Browse > Article

Sintering of porous ceramic of diatomite according to molding pressure and PEG content  

Lee, Ye-Na (Department of Materials Science and Engineering, Pukyong National University)
Ahn, Seok-Hwan (Department of Aero Mechanical Engineering, Jungwon University)
Nam, Hoseok (Graduate School of Energy Science, Kyoto University)
Nam, Ki-Woo (Department of Materials Science and Engineering, Pukyong National University)
Publication Information
Abstract
Diatomite powder, a naturally occurring porous raw material, was used to make ceramic materials with porosity and high strength. The sintering behavior of the diatomite powder at various sintering temperatures suggests that diatomite monoliths with a high porosity and strength can be prepared at $1100^{\circ}C$. The compressive strength of the sintered diatomite monoliths increased as the sintering temperature increased, and the molding pressure of 2 MPa and the binder of 18.6 wt.% were excellent. When the sintering temperature rises, the diatomite powder is melted, and its pores gradually disappear. SEM images show that strengthening begins with the formation of inter-particle bonds at a low sintering temperature.
Keywords
Diatomite; $SiO_2$; Molding pressure; PEG content; Sintering; Compressive strength.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.S. Manne and R.G. Richels, The Energy Journal 11 (1990) 51-74.
2 A.S. Manne and R.G. Richels, Global Climate Change (1991) 211-239.
3 A.Y. Watson, R.R. Bates and D. Kennedy, "Air pollution, the automobile, and public health", National Academy Press (US) (1988).
4 R. Atkinson, Atmospheric Environment 34 (2000) 2063-2101.   DOI
5 H. Nam, S. Wang and H.R. Jeong, Fuel 213 (2018) 186-194.   DOI
6 J. Wang, Y. He, Y. Zhang, X. Zhao, Z. Peng, S. Wang and T. Zhang, Fuel 213 (2018) 48-54.   DOI
7 J. Dobor, K. Perenyi, I. Varga and M. Varga, Microporous and Mesoporous Materials 217 (2015) 63-70.   DOI
8 M.C. Bruzzoniti, M. Appendini, L. Rivoira, B. Onida, M.D. Bubba, P. Jana and G.D. Soraru, J. Am. Ceram. Soc. 101 (20180 821-830.   DOI
9 E.Y. Litovsky and M. Shapiro, J. Am. Ceram. Soc. 75 (1992) 3425-3439.   DOI
10 Y. Ota, T. Kasuga and Y. Abe, J. Am. Ceram. Soc. 80 (1997) 225-231.0.   DOI
11 Z.Y. Deng, T. Fukasawa, M. Ando, G.J. Zhang and T. Ohji, J. Am. Ceram. Soc. 84 (2001) 2638-2644.   DOI
12 A.R. Studart, U.T. Gonzenbach, E. Tervoort and L.J. Gauckler, J. Am. Ceram. Soc. 89 (2006) 1771-1789.   DOI
13 K. Shqau, M.L. Mottern, D. Yu and H. Verweij, J. Am. Ceram. Soc. 89 (2006) 1790-1794.   DOI
14 R.K. Paul, A.K. Gain, B.T. Lee and H.D. Jang, J. Am. Ceram. Soc. 89 (2006) 2057-2062.   DOI
15 T. Gordon, A. Shyam and E. Lara-Curzio, J. Am. Ceram. Soc. 93 (2010) 1120-1126.   DOI
16 X.F. Wang, H.M. Xiang, X. Sun, J.C. Liu, F. Hou and Y.C. Zhou, J. Am. Ceram. Soc. 98 (2015) 2234-2239.   DOI
17 F. Akhtar, P.O. Vaseliev and L. Bergstrom, J. Am. Ceram. Soc. 92 (2009) 338-343.   DOI
18 X. Zhang, X. Liu and G. Meng, J. Am. Ceram. Soc. 88 (2005) 1826-1830.   DOI
19 H. Aderdour, A. Bentayed, A. Nadiri, A. Ouammou, J.C. Sangleboeuf, G. Lucas and C. Carel, J. Phys. 123 (2004) 361-364.
20 A. Saponjic, M. Stankovic, J. Majstorovic, B. Matovic, S. Ilic, A. Egelja and M. Kokunesoski, Ceramics International 41 (2015) 9745-9752.   DOI
21 J.H. Ha, J. Lee, I.H. Song, S.H. Lee, Ceramics International 41 (2015) 9542-9548.   DOI
22 M. Kokunesoski, A. Saponjic, M. Stankovic, J. Majstorovic, A. Egelja, S. Ilic and B. Matovic, Ceramics International 42 (2016) 6383-6390.   DOI